
AD-AIS 565 AIR FORCE INST OF TECH WRIGHT-PATTERSON AF9 OH SCHOO--ETC F/G 912
MULTI-CLASS ANALYTICAL MODELS OF THE OECSYSTEM-1O JOB-SWAPPING -- ETCtu)

UNCLASSIFIED AFIT/GOR/MA/81-4 NL12f211111I',
.lull

* I 1111
Ihi~hMENhh* 111111

a -?~ ,~x~-t
"' -~ 4~-&z-:;:'

4 -,.''-4, ~r' -'v~

4 '7t~'~ 4 - -#~~ ~ . *
~ ~ r~-

- 1 '4
r -I.- I

-4-.-'- .~ 't2P;M'tflW~7*~-'.~t 'AV~ C

*1"

I, _

-'' -r

It 'PLflJ

S ~tr -. :r:ag4~.ft~'$~ .

~,..%4l 'F ~PK~-§&J ~ "'is-

H7 ~'~>~k"' - '<K ~ g ,~'-'r~:9t ~ ~J'14 tQ' fry'
. . -iJ'L~ 44

4J As'
il- .--- ~~

C

r
4" I

A> V A;'
~t t

'-44 1
-a I - I

~Q, ~-

o j .~j,4'tr

~ V- V
'4' .. -.-- n-. -- -- 4 - -. . -

~ -

C. 4 -> -c
0. %~ktIAt ~44 -~ ,sr'/ 7 tV-~

~~'~'- '~ - - ' - 4 -

'--''CS"
ciA-" U 9t~W ~r' ~YA4 'nt

t
-'-

~

J-1

If

ML. '~'

MULTI-CLASS ANALYTICAL MODELS OF THE
DECSYSTEM-1 0 JOB-SHAPP lUG BEHAVIOR

THESIS (-

AFIT/GOR/MA/81D-4 Michael H. Cox
Captain USAF

n .. . 6... "

AFIT/GOR/MA/81D-4

MULTI-CLASS ANALYTICAL MODELS
OF THE DECSYSTEM-10 JOB-SfAPPING BEHAVIOR

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by Accesston ForNTIS GFA& I

DTIC TAB

Just ifioat 1 o.

Distri butionl/

Avallabl itt,
Michael H. Cox Iabl Codes

Capt USAF t vaC± ,,jur

Graduate Operations Research

December 1981p

(Cop,

Approved for public release; distribution unlimited.

Preface

This report is the result of an effort to further

develop computer performance evaluation (CPE) tools for

personnel at the Air Force Avionics Laboratory,

Wright-Patterson AFB, OH. A previously developed FORTRAN

program to solve multi-class closed queueing networks was

modified to include an approximation algorithm to improve

the accuracy of modeling job swapping.

Not only was this an academic learning experience, I

feel I have gained some insight into the problems of getting

support for a worthwhile project from the management

structure. Sometimes this can be the most difficult

obstacle in a research project. Also, I have learned a few

things about myself in the process. I am hopefull that I

will use this knowledge to take advantage of my strengths

and improve on some of my weaknesses.

First, I would like to thank my thesis advisor, Ltc

James Bexfield, for his support in this thesis effort. His

encouragement and guidance were only exceeded by his

patience.

-ii-

Also of great moral support were my parents. Their

many cards and letters and long-distance phone calls were

always full of encouragement.

I would like to thank all of my classmates in both the

GOR-81D and GCS-81D for their help through the year with the

many problem sets, term projects, and labs. A special

thanks goes to Ken Bauer for his artwork on the plots in

this thesis. More importantly, his light-hearted humor and

warm smile were always there to cheer me up. May you never

lose your tremendous concern for others.

Pinally, I would like to thank a small software company

called Mark of the Unicorn for developing Scribble, the best

text formatter for a CP/M home computer I've ever seen, and

for their patient help when I needed it.

Michael H. Cox

-iii-

Table of Contents

Preface ii

List of Figures viii

List of Tables ix

Abstract x

Chapter 1 Introduction 1

1.1 Computer Performance Evaluation (CPE)
1

1.1.1 Need for CPE 1
1.1.2 CPE Techniques 2
1.1.3 Development of Analytical Models

in CPE 5

1.1.3.1 Single Queue, Infinite
Population Model 5

1.1.3.2 Finite Population Model 6
1.1.3.3 Central Server Model 7
1.1.3.4 Classical Swapping Model

9
1.1.3.5 Chen's Swapping Model 10

1.2 Problem Statement 11

1.2.1 Motivation for Research
Objectives 11

1.2.2 Background 12
1.2.3 Research Objectives 13

1.2.3.1 Primary Objective 13
1.2.3.2 Specific Objectives 13

1.2.4 Scope of the Thesis 14

Chapter 2 Operating Systems and CPE 1

2.1 Operating System Objectives 2
2.2 Resource Manager Functions 2
2.3 The DECsystem-10 Operating System:

TOPS-10 Monitor 5

2.3.1 Monitor Programs 5
2.3.2 Job States 7

-iv-

Table of Contents (cont.)

2.3.3 Monitor Queueing Structure 11

2.3.3.1 In-core Versus Out-core
Chains 11

2.3.3.2 Processor Queues 11
2.3.3.3 Long-term Wait Queues 12
2.3.3.4 Processor Queue Time Slices

14
2.4 Chapter Summary 17

Chapter 3 Analytical Modeling 1

3.1 Early Queueing Network Models 1
3.2 Multi-class Queueing Network Model

3

3.2.1 Variables in the Model 4
3.2.2 Open Network Outside Arrival

Processes 5
3.2.3 Service Time Distributions 6
3.2.4 State-dependent Service Rates

7
3.2.5 Service Center Types 7
3.2.6 States of the Model 9

3.2.6.1 Type 1 Service Center 9
3.2.6.2 Type 2 and Type 3 Service

Centers 10
3.2.6.3 Type 4 Service Centers 10

3.2.7 Calculating Equilibrium State
Probabilities 11

3.2.7.1 Balance Equations 11

3.2.7.2 Product Form Solution 12

3.2.8 Example Problem 16

3.2.8.1 The Balance Equations 17
3.2.8.2 The Product Form Solution

24

3.3 Chen's Swapping Model 26

3.3.1 Variables in the Model 27

v

Table of Contents (cont.)

3.3.1.1 Derivation of P14 and P12

30

3.3.2 Program Swapping Behavior 32

3.3.2.1 Derivation of P43 32

3.3.2.2 Derivation of P13 34

3.3.2.3 Approximation Algorithm 36

3.4 Chapter Summary 37

Chapter 4 Computer Implementation 1

4.1 The McKenzie Program 2

4.1.1 Program Capabilities 2
4.1.2 Program Structure 3
4.1.3 Program Inputs 6

4.2 The Chen Modification 6

4.2.1 Program Structure 6
4.2.2 Program Inputs 8

4.3 Programming Notes for Future
Modification 11

4.4 Chapter Summary 13

Chapter 5 Analytical Modeling Results 1

5.1 Modeling Interactive/Batch Workloads
1

5.2 DECsystem-10 System Configuration
Parameters 2

5.2.1 Hardware Parameters 2
5.2.2 Workload Parameters 4
5.2.3 DECsystem-10 Swapping Model 6

5.3 Model Comparisons 8

-vi-

Table of Contents (cont.)

5.3.1 Definition of Performance
Measures 8

5.3.2 Tabular Results 9
5.3.3 Chen's Versus the Classical

Swapping Model 12

5.3.3.1 Probability Structure 12
5.3.3.2 Performance Predictions 15

5.3.4 Chen's Swapping Model:
Multi-class Versus
Single-class 19

5.4 Chapter Summary 24

Chapter 6 Conclusions and Recommendations
1

6.1 Conclusions 1
6.2 Recommendations for Future Research

2

Bibliography

Vita

Appendix A-]

-vii-

m | |0

List of Figures

1-1 Spectrum of Computer Modeling Techniques 1-4

1-2 Single-resource Queueing Model 1-6

1-3 Finite Population Model 1-7

1-4 Central Server Model 1-8

1-5 Classical Swapping Model 1-10

2-1 Monitor Cycle Programs 2-8

2-2 Job State Transitions 2-10

3-1 Method of Stages 3-6

3-2 State Transition Diagram 3-18

3-3 Global Balance Equations 3-19

3-4 Local Balance Equations 3-21

3-5 Chen's Swapping Model 3-29

4-1 McKenzie Program Flow Chart 4-5

4-2 New Program Flow Chart 4-9

5-1 DECsystem-10 Job-Swapping Model 5-7

5-2 Probability Structure (Two Classes) 5-13

5-3 Two Classes 5-16

5-4 Chen's Model 5-21

-viii-

List of Tables

3-1 Transition Matrix and Service Rates 3-16

3-2 Example Calculations 3-25

3-3 Probability Transition Matix for
Chen's Swapping Model 3-31

5-1 System Configuration Parameters 5-3

5-2 Classical Swapping Model Results 5-9

5-3 Chen's Swapping Model Performance
Results 5-10

5-4 Important Probability Transition
Matrix Values 5-11

-ix-

Abstract

An improved model of the DECsystem-10 job-swapping

behavior was developed. This model combines a previously

developed closed queueing network model with a job-swapping

model developed by Chen,/(Ref 5) Chen's swapping model

provides an approximate solution to a network queueing model

with a state-dependent probability transition.

This combined model is then tested on a hypothetical,

though realistic workload containing both interactive and

batch jobs. The two classes of jobs are treated first as

separate classes, as one class having the weighted average

job characteristics of both classes, and as one class having

just the interactive job characteristics. The results of

these experiments and a comparison between Chen's swapping

model and the classical are presented.

The results of the experiment indicate that it is

important to model multiple classes for systems which have a

significant amount of batch activity. Also, Chen's swapping

model provides a more realistic mo'd#l of job-swapping

behavior for the DECsystem-10. Therefore, combining the

multi-class model with Chen's swapping model improves the

modeling accuracy for the DECsystem-lO. Recommendations for

extensions to this multi-class Chen model are also

discussed.

-xi-

Chapter 1

Introduction

1.1 Comguter Performance Evaluation (CPE)

1.1.1 Need for CPE

In recent years, science and engineering have become

more concerned with the economic aspects in their fields due

to increased costs of high technology and tighter fiscal

budgets. Great attention has been given to the development

and refinement of techniques which help predict behavior of

systems and thus yield insights into what cost-performance

tradeoffs can be made (Ref 23:1).

Any system which is in the process of being designed,

procured, or modified must satisfy certain predetermined

performance specifications. This is especially true in

computer engineering where system specifications, reference

manuals, and user guides abound. Designers and engineers

use design and performance evaluation prediction techniques

to obtain systems which meet these specifications.

1-1

Introduction

Prospective users of a system use these techniques to

determine which combination of subsystems of components

comes closest to matching their requirements, given certain

cost constraints. Current users of a system use these same

evaluation techniques and tools to help make decisions about

existing systems concerning system upgrades and additions.

Therefore, performance evaluation is needed at all stages of

the life cycle of a computer product. (Refs 9:1,23:1-2).

Computer engineering is a fairly recent development and

therefore performance evaluation is less developed than

older branches of engineering, but definitely is not less

important . The products of computer engineering (central

processing units (CPU's), memory, -rinters, card readers,

tape drives, disk drives, etc.) are primarily designed to

perform certain functions related to the processing of

information. How well these systems execute their tasks is

a matter of tremendous technical, enonomic, and military

importance to the Air Force (Ref 9:3)

1.1.2 CPE Techniques

Techniques for evaluating a computer system can be

divided into two categories: measurement techniques and

modeling techniques. Measurement techniques involve using

1-2

Introduction

performance monitors to detect and analyze system events.

These monitors can be hardware oriented or software

oriented, and their use with benchmark programs is called

benchmarking. Modeling techniques, on the other hand, do

not directly involve the system in question, but deal with a

conceptual representation of the system (Refs 1, 9, 29).

These modeling techniques can be divided into four

categories (Ref):

1. Rules of thumb, e.g. CPU utilization should not
exceed 35 percent for on-line applications or 40
percent for batch applications.

2. Linear projection, e.g. "Computer useage doubled in
the last year, so it will double again next year.*

3. Analytical queueing models.

4. Simulation models.

Another CPE technique discussed by Svobodova (Ref 29:48-49)

and more extensively by Sanabria (Ref 25) is empirical

modeling. This technique combines the linear projection

technique with benchmarking. Measurement data are collected

from the real computer system and regression or some other

curve-fitting technique is used to develop performance

prediction curves.

1-3

Introduction

I I

ACCURACY,
COMPLEXITY, DEVELOPMENT COST

I LOW< -- >HIGH I

I I I I I I I
I IRULESI LINEAR IANALYTICALI I I I
I I OF IPROJECTIONI QUEUEING ISIMULATIONIBENCHMARKING1 I
I ITHUMBI I THEORY I I I I

I I
I I
I I

Figure 1-1 Spectrum of Computer Modeling
Techniques (Ref 1:13)

These evaluation techniques involve increases in

accuracy as one moves from the very simplistic rules of

thumb to the very complex benchmarking techniques (see

Figure 1-1). Unfortunately, the same increase in accuracy

also involves an increase in cost. The computer engineer

involved in CPE must then make tradeoffs as to the amount of

accuracy he can afford. These tradeoffs are extremely

prevalent when comparing the two most widely used types:

simulation and analytical queueing models.

There are three reasons for the increasing popularity

of analytical models over simulation models for computer

system modeling (Refs 1, 4, 11, 21, 23, 26, and 29):

- Analytical models capture the most important features

1-4

Introduction

of actual systems, i.e. jobs moving from one queue to
another waiting for service from independent devices
within the system.

- The assumptions of the analysis are realistic. General
device service time distributions, load-dependent
devices service times, and multiple classes of jobs can
be modeled.

- The algorithms that solve the equations of the model
are available as highly efficient queueing network
evaluation packages. Because of their efficiency and
simplicity, these models are cheaper than simulations
to develop and run.

1.1.3 Development of Analytical Models in CPE

The development of more flexible analytical modeling

techniques for computer system modeling has paralleled the

evolution of computer systems from single-programmed, batch

systems to multi-programmed, combination interactive/batch

systems.

1.1.3.1 Single Queue, Infinite Population Model

The earliest techniques modeled the entire computer

system as a single resource with a single queue and an

infinite population of jobs (see Figure 1-2). This model was

used for the early batch computers, since the CPU was the

dominate resource and only one job could be in the system at

a time.

1-5

Introduction

PREEMPTED JOBS

I II
I I

I Ii
IARRIVALS I SYSTEM I I DEPARTURESI

----------->1 OF I - ---- > --------------- >
I QUEUES I

I i

Figure 1-2 Single-resource Queueing Model (Ref 21:947).

1.1.3.2 Finite Population Model

With the advent of interactive systems, modeling the

system as a single-resource queue with an infinite

population of jobs became less realistic. Because there are

a finite number of jobs circulating within an interactive

system, the rate of arrival of new requests for service will

tend to decrease as the queue length grows. The finite

population model, also known as the machine interference

model, was used to model this phenomena (see Figure 1-3). In

the early interactive systems, only one complete job could

be in memory at a time. The execution of the jobs, I/O

activity, and the swapping activity were not overlapped.

Therefore, program execution, I/O activity, and the swapping

1-6

Introduction

time were summed and used as the CPU service time (Ref

21:946-947).

TERMINALS

--- -- - - -- - - -- < - -- - -- - -- -- -- -- - -- - - ---- -- --

PREEMIPTED JOBS

I _ _ _ _

II I
I I I I
II I I

----------------- I I ---------- ------------------I II T M I I I
.... > I OFI

QUEUES I

Figure 1-3 Finite Populaton model (Ref 21:947).

1.1.3.3 Central Server Model

With the development of true multi-pr og ramming, i.e.
more than one entire job within memory, the finite

population models became less realistic. The most

fundamental characteristic of jobs in a computer system is

that they alternate between CPU execution and being blocked

1-7

. . .. I I I

Introduction

from further CPU execution waiting for access to secondary

storage. With more than one job in memory, the I/O activity

of one job could be overlapped with the execution of another

job. A model which considers this type of behavior is shown

in Figure 1-4. Note that this model still does not consider

swapping times separately.

TERMINALS

< ---- I- - -

. . . . I I . . .

ISECONDARY STORAGE
I DEVICES

I I - -I I I

.... >1 I I I I

II I ______II1

II I
III ICI I I I I I

...>I'I I I I

III1 ________ I

Figure 1-4 Central Server Model (Ref 3).

1-8

I II I II II

Introduction

1.1.3.4 Classical Swapping Model

As more and more computing systems used swapping as

their memory management strategy, it became necessary to

more accurately model the job swapping activities. The

classical method to model job swapping explicitly was to add

a swapping device node after the terminal interaction node

(see Figure 1-5). Thus, each job is swapped out after each

interaction with the user at the terminal (Ref 20). To

improve the overall accuracy, two other improvements to the

interactive model were developed (Ref 2:249)

1. Multiple classes of jobs with each class having its
unique transition probabilities and node service
times.

2. Non-exponential service times using the method of
stages.

A more detailed account of these improvements and how they

were integrated into one model is given in Chapter 3.

1.1.3.5 Chen's Swapping Model

Chen (Ref 5) proposed a new approach to modeling

job-swapping behavior: that it be modeled by state-dependent

transition probabilities in a closed queueing network with a

1-9

-i I 1 I i I

Introduction

single class of jobs. Since an exact solution to this

problem does not currently exist, Chen developed an

approximation algorithm that iteratively solves a closed

queueing network. Chen's model is described in more detail

in Chapter 3.

TERMINALS I

I SWAPPING DEVICE I I

.< --------------

< --------- _J__

II _I ______I I

I SECONDARY STORAGE
DEVICES

I I < - I I I I - I I

PREEMPTED JOBS
< . .--------------------------------- I II

----------- >1 I I I ---)----------------------I

Figure 1-5 Classical Swapping Model (Ref 5).

1-10

g

Introduction

1.2 Problem Statement

1.2.1 Motivation for Research Objectives

The Avionics Laboratory at Wright-Patterson AFB is

responsible for research, development, and validation of

avionics systems for present and future aircraft in the Air

Force inventory. This includes the development and

validation of both the hardware (instrument displays,

control consoles, etc.) and software (the computer programs

that control the hardware) for navigational aids, weapons

delivery systems, and electronic warfare systems. The

laboratory is one of the most advanced facilities for the

development and validation of avionics systems.

One of the primary test beds for avionics system

development is the Qigital Electronics Corporation's

DECsystem-10 mainframe computer. The DECsystem-10 is a

multi-programming, multi-processing, time-sharing computer

with real-time processing capabilities. It provides

high-level language support (FORTRAN, PASCAL, COBOL, BLISS,

JOVIAL, and in the future ADA); assembly language support;

document and manual preparation programs such as editors,

1-11

Introduction

text formatters, and spelling checkers; and graphics and

plotting programs. Several mini-computers (PDP-ll's) are

directly interfaced to the DECsystem-10. This allows

real-time communication between the DECsystem-10 and the

PDP-11 which are used to control testing and simulation of

current and experimental avionics systems.

Since the DECsystem-10 is such a vital Air Force

resource in the research and development of state-of-the-art

avionic systems, it is important that this resource is used

as efficiently and effectively as possible. To insure the

proper management of this resource, the system managers must

have the proper tools to predict the impact of future

workload changes, potential operating system changes, and

reconfiguration of hardware resources. With these tools,

the managers of the DECsystem-1O will gain a better

understanding of the factors impacting computer performance

and will be better able to make decisions to properly manage

the DECsystem-10.

1.2.2 Background

In 1977 McKenzie developed a computer program to solve

multi-class closed queueing networks with service centers

having different service disciplines. This program was used

1-12

Introduction

to solve simple finite population and central server type

queueing models of the DECsystem-10, the results of which

helped the Avionics Lab to justify the purchase of

additional memory. Both the results from McKenzie's limited

validation and Saxton's entire thesis (Ref 24), indicated

that more detailed models of the DECsystem-10 job-swapping

behavior were needed (Refs 19:141 and 24:107).

1.2.3 Research Objectives

1.2.3.1 Primary Objective

The primary objective of this thesis effort was to

improve the models of the DECsystem-10 by better modeling

the job-swapping behavior. This will enable the system

administrators to make more informed decisions concerning

the present use of the computer system resources, as well as

more accurate and responsive planning for future computer

system acquisitions.

1.2.3.2 Specific Objectives

In order to meet the above primary objective, the

following tasks were accomplished in this thesis effort:

1. The McKenzie program to compute performance measures
for closed, multi-class queueing networks was brought

1-13

Introduction

up on the CDC computer. The program had to be typed
in from a listing in the thesis and subsequently
debugged in order to make it runnable.

2. The program was modified to include an approximation
algorithm developed by Chen (Ref 5) to better model
the DECsystem-10 swapping behavior. By combining the
multi-class modeling capability of the McKenzie
program with Chen's algorithm, we now have a new, more
powerful tool to accurately model the performance of
an interactive computer system with job-swapping.

3. The modified program was run using a workload
consisting of interactive and batch jobs and the
results used to answer the following questions:

- Does Chen's swapping model improve the accuracy
of the performance predictions when compared to
the classical swapping model?

- Does combining Chen's swapping model and multiple
classes improve the accuracy of the performance
predictions? Specifically, is it important to
model an interactive computer system containing
both interactive and batch jobs with a
multi-class model versus using a single class
model where

* The single class has the weighted average of
the characteristics of the batch and
interactive jobs in the multi-class model;
or

* The single class has the characteristics of
the largest class of jobs in the system?

1.2.4 Scope of the Thesis

The the next chapter will discuss the objectives and

basic functions of computer operating systems. This will be

followed by a description of the DECsystem-10's operating

system in enough detail to determine how it affects job

1-14

Introduction

swapping. Chapter 3 provides a detailed discussion of the

state-of-the-art analytical queueing model with a product

form solution developed by Basket, Chandy, Muntz, and

Palacios. Chapter 3 concludes with a detailed description of

Chen's swapping model and its underlying assumptions.

Chapter 4 contains a description of McKenzie's computer

implementation and how it was modified to include Chen's

algorithm. Chapter 5 presents the results of modeling a

hypothetical workload using the modified model to answer the

above questions. Finally, Chapter 6 will present a summary

of the conclusions as well as recommendations for future

work in this area.

1-15

Chapter 2

Operating Systems and CPE

The primary method of improving the performance of an

existing computer system without buying new and improved

hardware is to moaify the behavior of the program that

controls the computer system. This program is called the

02er.ing s Operating systems usually have built-in

software parameters which may be set to allow the system

administrator to implement various scheduling policies and

priority schemes. Poorly chosen settings of these operating

system parameters can cause inefficient use of system

resources. Therefore, it is important that the system

administrator has the tools to properly determine these

operating system parameters. Before discussing this problem

in detail and how it relates to the specific case dealt with

in this paper, we will first review some of the basic

objectives and functions of operating systems.

2-1

Operating Systems and CPE

2.1 Oerating System Objectives

The operating system is a collection of system programs

(algorithms) designed to meet the following objectives (Ref

6:2):

- Provide the programmers with an efficient environment
for program development, debugging, and execution.

- Provide a range of problem-solving facilities
(application programs).

- Provide all this at the lowest cost by sharing
resources and information.

2.2 Resource Manager Functions

In order to meet the above objectives, the operating

system must efficiently manage the systems's resources.

Therefore, its primary role is that of resource manager. It

must accomplish the following (Ref 18:8):

1. Keep track of the resources.

2. Enforce policy that determines who gets what, when,

and how much.

3. Allocate the resources.

4. Reclaim the resources.

2-2

Operating Systems and CPE

The operating system's primary role can be broken down

by resource type: memory, processors, devices (disk drives,

tape drives, printers, etc.), and information (programs and

data such as editors, compilers, file directories and other

software resources). Below are listed the resource

management functions by type and typical names given to some

of the routines that perform these functions (Ref 18:9-10):

- Memory Management Functions

1. Keep track of the resource (memory). What parts
are in use and by whom? What parts are not in
use (called frj)?

2. If multiprogramming, i.e. more than one program
in execution at one time, decide which job gets
memory, when it gets it, and how much.

3. Allocate the resource (memory) when the jobs
request it and the policy of 2 above allows it.

4. Reclaim the resource (memory) when the job no

longer needs it or has been terminated.

- CPU Processor Management Functions

1. Keep track of the resource (processors and the
status of jobs). The system program that does
this has been called the traffic c o .

2. Decide who will have a chance to use the
processor; the jj s l chooses from all the
jobs submitted to the system and decides which
one will be allowed into the system, i.e. have
resources assigned to it. If multiprogramming,
decide which job gets the processor, when, and
how much.

3. Allocate the resource (processor) to a job by
setting up necessary hardware registers; this
system program is often called the dijs atche.

2-3

Operating Systems and CPS

4. Reclaim the resource (processor) when the job
relinquishes processor usage, exits from the
system after job completion, or exceeds allowed
amount of usage and aborts.

Pevice Management Functions

1. Keep track of the resource (disk and tape drives,
channels, control units); this is typically
called the I& traffic/ trollier.

2. Decide what is an efficient way to allocate the
resource (device). If it is to be shared, then
decide who gets it, and how much he is to get;
this is called I./O scuingULn.

3. Allocate the resource (device) and initiate the
I/O operation.

4. Reclaim the resource (device). In most cases when
the I/O terminates, the device is released
automatically, but the operating system must be
informed of the new status of the device.

Information Management Functions

1. Keep track of the resource (information), its
location, use, status, etc. These collective
facilities are often called the Lfe system.

2. Decide who gets use of the resources, enforce
protection requirements, and provide acessing
routines.

3. Allocate the resource (information), e.g., o en a
file.

4. Deallocate the resource, e.g., close a file.

2-4

Operating Systems and CPR

2.3 The DECsvstem-10 ODeratina Systeme TOPS-10 Monitor

The TOPS-10 Monitor performs the accounting,

scheduling, resource allocation, and service routines

necessary to operate in a multiprogramming, time-sharing

environment. It both controls user jobs and provides

services to them. The monitor gives the appearance of a

single-user machine to all the users on the DECsystem-10 by

rapidly switching control to each user. It manages all I/O

operations, according to requests from user programs and

from device interrupts. It attempts to allocate all system

resources in such a way as to give the best overall system

performance (Ref 8:INTRO-10).

2.3.1 Monitor Programs

The monitor consists of many separate and more or less

independent programs which are called according to events

which occur within the system. The system programs are

divided into two types depending on whether the program

executes synchronously or asynchronously. Synchronous

1. The clock interrupt is an AC line generated interrupt and
therefore occurs every 1/60 of a second. This time interval
has been given the name 'jiffy" and the term occurs
frequently in DECsystem-10 literature.

2-5

Operating Systems and CPE

system programs execute once between system clock

interrupts I and complete their function before the next

clock interrupt. After each clock interrupt, the monitor

cycle is executed followed by the running of a user job

selected by the Job Scheduler (Ref 8). The synchronous

system programs are the

CLOCK1 The system program which acts as the "mainm
calling program for all other system
programs. This program contains the code
used by the Job Scheduler to make the actual
resource assignments.

Job Scheduler The system program which selects the next job
to run in the remainder of the jiffy and
controls the allocation of system resources.
This program is also known as SCHED.

Command Processor
The system program which reads in a typed
command and interprets it.

Context Switching Routine
The system program which transfers control to
the user job selected by the Job Scheduler.

Asynchronous system programs execute on an as needed

basis by jobs within the system and may have program cycles

lasting longer than one jiffy. The asynchronous system

programs are described below

Job Swapper The system program called by the Job
Scheduler to keep as many runnable jobs in
memory as possible. Even though it is called
each time during the execution of the Job
Scheduler (a synchronous program), the Job
Swapper is not synchronous since the swapping
in and out of a job usually takes several
jiffies to complete. The Job Swapper

2-6

Operating Systems and CPE

"remembers" what it was doing when called by
the Job Scheduler. Each time the Job Swapper
is called, it continues processing where it
last terminated during the last jiffy.

UUO2 Processor Routine
The system program which executes whenever a
job requests I/O service such as disk reads
or writes.

Core Management Routine
The system program which dynamically
allocates memory as needed by other system
programs or user jobs.

The system programs described above and how they

interact with one another during a clock interrupt is shown

in Figure 2-1. All dotted arrows represent asynchronous

events which may or may not occur within a monitor cycle,

depending on the state of the system (Ref 8).

2.3.2 Job States

The next state transition that a job can enter depends

on the current state of the job (Ref 6:31-35). The job state

is represented by many status variables maintained within

the monitor system program and job status tables. A job can

be in one of four states (Ref 8:5-1):

2. Unimplemented User Operations (UUO) are machine language
operation codes which directly call the monitor to execute
supervisor level tasks such as I/0 requests to system
peripherals.

2-7

II WIEM

I I I I I I I
I I I I I I I
I I I I I I I
I I I I N *'*~ I I C)

I I I N N I I CO C)
I 1 5 I N N I I >4 0
I I I I - N I I
I I I I I I 2 >4
I I I I I I I

I I I I I Ia i

I I I I I I I N
I I I I I I N

I I I 1 1 I I N E4 E-4
I I I I I I I N
I I I I I I I CO CO

I I I I I I N 2 2
I I I I I JJ~N 00
I I I I ~4 -
I I I N-~IIIl E~ E~
I I I N I I I I I-i I-I
I I I N4--4-... I I I CO CO

I I N I ~N I I 2
I I I N I N I I
I I I I N I I
I I I N I N I I

I'' 04
N I I I I I I I 0

I I A C)
I I N I I I I

I N I
I N I I N.....~N I I

I I N I I NN
1 I N I I N N I I
I I N I I N N I
I I N I I I 0
I I NlI~N I

I ~ I I
I IN 4~TI I -
I IN I

I v a'N I I I I I I IN a
N II I I1 1 I~
I N I I 5 1 I 1
I N I I I I Iii

I I I I
N I I I I I I I
N I I I I I I I
N I I I I I I I

0
CO '-4 E*4 0404
CO 2
CO ~ CO

N I
CO CO N I
CO N I

04 ~ w CO N I
~ 0 N I
CO CO

0 CO N I
04 04 N I

NI
CO N

C) ~ C) NI

Operating Systems and CPE

1. The job is in a processor queue, has memory, and is
running on a CPU.

2. The job is in a processor queue, ready to execute on a
CPU. As defined by DECsystem-10 literature, a job in a
processor queue is defined to be ready to execute if
the job is not waiting for a shareable resource ,even
though the job may have no memory and must first be
swapped in.

3. The job is in a short-term wait state. Jobs in this
state were previously in the running state, but
requested the use of a shareable resource. Jobs in
the short-term wait state can not be selected to
execute until they are assigned the shareable resource
and are once again runnable.

4. The job is in a long-term wait state. Jobs in this
state were previously in the running state, but then
requested the use of a non-shareable resource.
Non-shareable resources are distinguished from
shareable resources by the length of time the job may
have to wait to be assigned the resource.
Non-shareable resources include such things as line
printers or card readers, as well as less obvious
non-shareable resource such as a response from a
terminal.

The possible states of a DECsystem-10 are summarized in

Figure 2-2. The states labeled HPQ 1-15, PQ1, and PQ2 are

the processor queues and are discussed in the following

section.

3. A shareable resource is some part of the system, either
hardware or software, which can be used by only one job at a
time, but is shared among different jobs over relatively
short periods of time. Examples of shareable resources are
I/O channels and disk drives used to satisfy disk I/O
requests

2-9

Ar rz M rarn p
C4 z IE

to 0 0

\p. E- -tE4 -
+ - H H1H

r-4 C4

caa

00

-E-

H~ -1' - to

00

a /%

'00-, / 4/

in 0 6i4 E

o4 w x aoE

III u r I

r46

Operating Systems and CPE

2.3.3 Monitor Queueing Structure

Scheduling in the DECsystem-10 is based on the use of

auee and wait state codes. The jobs in the system are

maintained in a master set of queues, which are logically

divided into long-term wait queues and processor queues.

2.3.3.1 In-core Versus Out-core Chains

Each queue in the long-term wait queues and processor

queues are separated into two chains: one contains all the

jobs in the queue that are in-core and the other contains

all the jobs that are o (have no memory). This

breakdown enables efficient scanning of the queues by the

Job Scheduler and the Job Swapper. The scheduler only has to

scan jobs in the in-core chains to find a runnable job with

memory. The Job Swapper only has to scan jobs in the

in-core chains to find a job to swap out to make room for a

higher priority job or scan the out-core chains to find a

job that needs to be swapped in (Ref 8:SCH-8).

2.3.3.2 Processor Queues

Jobs in the processor queues can either be running,

ready to run (with or without memory), or in a short-term

wait for a shareable resource. The processor queues are the

2-11

Operating Systems and CPE

high-priority queues (HPQ's), PQ1, and PQ2. Each are

described below (Ref 28:2-1):

HPQ's (Up to 15 levels, called HPQ1 through HPQl5)
contain jobs that require real-time response,
such as the line-printer spooler and the
card-reader spooler system programs. These
queues are scanned first by the Job Scheduler
to find an executable job.

PQl Contains jobs that require fast response,
such as time-sharing jobs. This queue is the
next most often scanned processor queue.

PQ2 Contains jobs that require long-term
computing, such as those that compile
programs. Jobs in this queue are scanned
least often by the Job Scheduler, since fast
response is not necessary.

In addition to providing a priority structure for the Job

Scheduler to scan for an executable job, it establishes a

priority structure for the Job Swapper. The priority

structure, though, is exactly reversed. The Job Swapper

first scans PQ2, PQ1, and then the HPQ's to find a job it

can swap out. The Job Swapper can not swap-out jobs

performing disk I/O's and tries to avoid swapping out an

executable job. Therefore, jobs in long-term wait states

and other short-term wait states besides disk I/O's are the

Job Swapper's primary target.

2.3.3.3 Long-term Wait Queues

The long-term wait queues hold jobs that are in a

2-12

Operating Systems and CPR

long-term wait state. The queues and their purpose are

described below (Ref 28:2-3):

CMQ Command Wait Queue. The user has typed a
monitor command that cannot be executed until
the command program is in memory, and the
program is not in memory.

TIOWQ Teletype I/O Wait Queue. Waiting for the user
to type a response or waiting for the device
to print output already sent to it.

JDCQ DAEMON Wait Queue. The job is waiting for
service by DAEMON. The DAEMON is a system
program which runs as a user job and performs
various functions such as recording
accounting data or error logging required by
other user jobs. It is, in effect, a
non-resident portion of the monitor.

EWQ Event Wait Queue. This queue encompasses many
types of resource allocation waiting lines
such as waiting for a magnetic tape
controller, etc.

Jobs in a long-term wait queue are requeued to the rear of

the PQl when their long-term wait is satisfied.

Describing the above as queues is actually a misnomer.

Having a queue implies that some order exists in the queue,

i.e. first-come-first serve (FCFS), last-in-first-out

(LIFO), etc. In the long-term wait queues the order in

which they leave the queue is not dependent on their order

in the queue. Instead, the order in which they leave is

totally dependent on the job characteristics. For example,

even though user A may arrive before user B to the terminal

2-13

Operating Systems and CPS

I/O wait queue (TIOWQ), if user B responds first, he leaves

the queue before user A.

The main purpose of having long-term wait queues is two

fold:

- Remove jobs from the processor queues so that the Job
Scheduler does not waste time scanning jobs that are
not expected to become runnable for long periods of
time.

- Provide a set of queues that the Job Swapper can scan
first to find a job to swap-out to make room for other
jobs.

The important thing to note here is that when there are more

jobs than can fit in memory, jobs in the long-term wait

queues will be swapped from the in-core chain to the

out-core chain before jobs in the processor queues.

2.3.3.4 Processor Queue Time Slices

Other factors, besides which queue the job is in,

affect the likelihood that a job will be swapped. These

include how long it can be in memory without becoming

eligible for swap-out and its position in the queue. These

two factors are determined by the time slice assigned to a

job.

When a job enters one of the processor queues, it is

2-14

Operating Systems and CPR

assigned a time slice. The time slice consists of two

components: the in-core protect time (ICPT) and the quantum

run time (QRT). The ICPT and QRT are actually counts. The

ICPT is the number of times the Scheduler can try to execute

the job before the job becomes eligible for swap-out. The

QRT is the number of times the Scheduler can execute the job

before it is requeued to the rear of a processor queue.

Each time the Job Scheduler scans a job to see if it is

executable, the ICPT is decremented. Note that the Job

Scheduler may not execute a job because it is in some

short-term wait state, but the ICPT is still decremented.

When this count reaches zero, the job becomes eligible for

swap out. The ICPT provides a mechanism wherein the swapper

is prevented from immediately swapping out a job which has

just been swapped in, and in effect "locks" the job in

memory until its ICPT is zero (Ref 8).

Each time the Job Scheduler chooses a job to execute,

that job's QRT is decremented. When the QRT reaches zero,

the job either requeues to a lower priority queue, e.g. PQ1

jobs requeue to the end of the PQ2 queue, or the job

requeues to the rear of the queue it is in, e.g. PQ2 and

HPQ jobs requeue to the rear of their respective queue.

When treated in this way, the QRT limits the amount of CPU

2-15
i0

Operating Systems and CPE

time the job receives in a particular queue, thus providing

a fairness consideration in assigning CPU time. Also, since

the Job Swapper usually scans the processor queues from back

to front, jobs that have most recently expired their QRT and

were requeued to the rear of the queue are more likely to be

swapped out (Ref 8). This provides a fairness consideration

in assigning the use of main memory.

P01 Time Slice

The PQ1 time slice is the amount of time that a job

receives fast interactive response after being swapped in.

The QRT of the PQ1 queue is usually much smaller than other

processor queues in order to provide quick response to

interactive jobs. The short QRT will be sufficient for

interactive jobs before they become blocked to a long-term

wait state, e.g. waiting for terminal response. The more

CPU-intensive jobs will expire their QRT and be requeued to

the lower priority PQ2 queue. There, they will be assigned

a new, much larger QRT, but now have a lower priority for

execution and a greater likelihood of being swapped out.

2-16

Operating Systems and CPE

P02 Time Slice

For PQ2 jobs, the parameters for ICPT and QRT control

the bias of the scheduler for throughput versus response and

for I/O versus CPU. Throughput versus response is controlled

by increasing or decreasing the magnitude of both

parameters. As the parameters are increased, jobs expire

their time slices more slowly, swapping rate decreases, and

less core is allocated for swapping. These effects improve

throughput, but average response is correspondingly degraded

because interactive jobs wait longer to swap in. When you

decrease both parameters the effect is reversed. I/O versus

CPU response is controlled by changing the ratio of ICPT to

QRT. Increasing only QRT favors CPU-bound jobs. Increasing

only ICPT favors I/O-bound jobs, while reducing it tends to

favor CPU-bound jobs (Ref 28:5-3).

2.4 Chapter Summary

The following are the important aspects to remember

about the TOPS-10 Monitor

- The Monitor executes every jiffy at which time the Job
Scheduler selects a job to run the remainder of the
jiffy.

2-17

Operating Systems and CPE

- Jobs in the system can be in one of four states

1. Executing on the CPU.

2. Ready to run but waiting for its turn to execute
on the CPU.

3. In a short-term wait state waiting for a
shareable resource.

4. In a long-term wait state waiting for a
non-shareable resource.

- Jobs in the system wait in processor queues for the CPU
or for shareable resources while jobs waiting for
non-shareable resources wait in the long-term wait
queues. Interactive jobs wait for terminal response in
a long-term wait queue.

- The processor queues and the long-term wait queues are
divided into in-core chains (jobs that have memory) and
out-core chains (jobs without memory that will have to
be swapped in).

- Jobs in the long-term wait queues will be swapped from
the in-core chain to the out-core chain before jobs in
the processor queues.

- The time slices assigned to jobs by the Job Scheduler
are made up of two components: the incore protect time
(ICPT) and the quantum run time (QRT).

The ICPT provides a mechanism where in the swapper
is prevented from immediately swapping out a job
which has just been swapped in, and in effect
"locks' the job in memory until its ICPT is zero.

* The QRT limits the amount of CPU time the job
receives in a particular queue, thus providing a
fairness consideration in assigning CPU time.

The short QRT in PQI will be sufficient for
interactive jobs before they become blocked
to a long-term wait state while more
CPU-intensive jobs will expire their QRT and
be requeued to PQ2 where they will be
assigned a new, much larger QRT.

2-18

Operating Systems and CPE

The longer QRT in PQ2 provides the extensive
processing needs of jobs needing large
amounts of CPU processing. The ratio of the
PQ2 QRT and the ICPT determines the
schedulers bias towards CPU-intensive jobs
versus I/O intensive jobs.

2-19

Chapter 3

Analytical Modeling

3.1 Early Oueueing Network Models

Jackson (Ref 14) and Gordon and Newell (Ref 10) give

solutions for the case of networks of queues with the

following assumptions

1. There are a finite number of nodes, M.

2. There are a fixed finite number of customers, N.

3. The manner in which customers visit the various
resources is governed by a transition matrix P -
(p..], where p.. is the probability that a customer
debarting from Wbde i will next visit node j.

4. The service time distributions at nodes are
exponentially distributed.

5. The service rate may be a function of the number of
customers.

6. All customers are identical in that their routing
probabilities and service times at the H nodes are the
same.

For this class of models, a state of the model is given

by the number of customers at each node. Thus the set of

states is just

3-1

Analytical Modeling

M

(nI , n2,",M) ni - N
i-l

The equilibrium state probabilities are given by

M

P(nl, n2, .nM) C X ini

n.

H ui(J)
j=l

where

x i The mean arrival rate to the ith node.

ui(j) The instantaneous departure rate from the ith

resource when there are j customers queued at
this node.

C The normalization constant is chosen so that
all the equilibrium state probabilities sum
to one.

The calculation of C can be very time consuming since

the number of states is

(M + NN - I1)

However, methods of calculating C have been found which

increase only as MN2 (Ref 3) allowing larger queueing

networks to be solved.

3-2

Analytical Modeling

3.2 Multi-class Oueueino Network Model

The earliest queueing models developed by Jackson and

Gordon and Newell, and the computational algorithm derived

by Buzen suffered from two limitations:

1. Only one class of customers was allowed in the
network.

2. All the service time distributions were exponential.

Recently developed queueing models addressed many of

the important aspects of applying queueing models to

time-sharing computer systems such as multi-class jobs and

non-exponential service time distributions. Still, no one

unified model existed to describe all these aspects of

time-sharing systems.

The model developed in reference 2 by Basket, Chandy,

Muntz, and Palacios and described below accomplished this

unification. It combined recent results on the networks of

queues of several different service disciplines and a broad

class of service time distributions with earlier results on

networks of queues containing different classes of

customers. This model thus more accurately describes a

time-shared computer system.

3-3

Analytical Modeling

3.2.1 Variables in the Model

The model describes a system with an arbitrary but

finite number (N) of service centers with an arbitrary but

finite number (R) of job classes. The routes through the

network of service centers for the R classes of jobs is

determined by a probability transition matrix

P = [P i,r;j,s] where Pi,r;j,s is the probability of a class

r job at service center i going to service center j as a

class s job. The transition matrix defines a Markov chain

assumed to be decomposable into m subchains, E1 ,E2,...E m

Let nir be the number of jobs of class r at service

center i in state S. of the network model. Also let

M(S/Ej) - n
Ui,r) e ir

be the total number of jobs within the subchain. Then

m

M(S) E M(S/E.)
j-1

3-4

Analytical Modeling

is the total number of jobs in the network. A system is

closed when M(S/E.) = constant, 1 < j < m.

3.2.2 Open Network Outside Arrival Processes

In an open network the arrivals to node in a queueing

network can be external from the network. The fixed

probability of an outside arrival of a class r customer at

service center i is qir o The probability of a class r job

leaving the system from service enter i is

E Pi r;j,s

l<j<N ,i
l<s<R

The external arrival process can be state dependent and

is of two general types

1. The arrival rate, X (M(s)) is dependent on the total
number of customers in the system, M(S).

2. The arrival rate, kg(M(S/E.) is decomposed into m
Poisson arrival str ams carresponding to the m
subchains described above. The m arrival rates are
dependent on the number of customers in the subchain,
M(S/E.).

3-
3-5 IJ

Analytical Modeling

3.2.3 Service Time Distributions

Exponential, hyperexponential, and hypoexponential

distributions are eligible service time distribution for

this model. Also, any service time distribution that can be

represented as a network of states can be used as a service

time distribution. In this method of stages technique, uirl

represents the service rate of a job in service stage 1 at

service center i who is in class r. There are sir service

stages for a job in class r at node i. The probability of

going to the next stage is airl, while the probability of

completing service is birl* These concepts are illustrated

in Figure 3-1.

I \bIi bit2 birs

ir I

Figure 3-1 Method of Stages.

3-6

Analytical Modeling

3.2.4 State-dependent Service Rates

Three types of state-dependent service rates can be

incorporated into the Basket, et. al. model

1. The service rate at a service center can depend on the
total number of jobs at that service center. This
form of state-dependent service rate is useful to
model multiple, identical servers. If there are k.
identical servers at service center i, then by takin4
the service rate with one job present and multiplying
it by the following function

X nn i, I n i < k,

Sk, n k

we obtain the service rate for service center i.

2. The service rate of a job class can depend at a
service center on the number n. of class r jobs at
service center i.

3. The service rate of a service center can depend on the
number of jobs at other service centers in the
network.

Note that these various forms of state-dependent service

rates can be mixed.

3.2.5 Service Center Types

Service centers can be one of four types:

1. The service discipline is first-come-first-served
(FCFS).

3-7

Analytical Modeling

- All customers have the same service time
distribution at this service center.

- The service time distribution must be a negative
exponential.

- Only state-dependent service rate types 1 and 3
can be used.

This type of service center is most often used to
model the I/O devices such as disks, drums, and tape
drives in a computer system.

2. The service discipline is processor sharing (PS),
i.e. when there are n. customers in the service
center, each is receivin service at a rate of 1/n.
times the service center's rate for its job class.

- Each class of customer can have a distinct
service time distribution.

- All three service time distributions can be
used.

- All three state-dependent service rate types can
be used.

This type of service center is most often used to
model a central processor that uses a round-robin
scheduling algorithm. This is appropriate since
round-robin scheduling approaches the processor
sharing service time as the round-robin time quantum
approaches zero.

3. The number of servers in the service center is greater
than or equal to the maximum number of customers that
can be at this center in a feasible state (this is the
infinite server (IS) case).

- Each class of customer can have a distinct
service time distribution.

- All three service time distributions may be
used.

- All three state-dependent service rate types can
be used.

3-8

Analytical Modeling

This type of service center is most often used to
model the terminal users in a time-sharing computer
system.

4. The service discipline is preemptive-resume last-come-
first-served (LCFS)

- Each class of customer can have a distinct
service time distribution.

- All three service time distributions can be
used.

- All three state-dependent service rate types can
be used.

This type of service center is most often used to
model a central processor in which jobs can preempt
other jobs using the processor.

3.2.6 States of the Model

The state of the model is represented by a vector

(xl , x2 ,...xN) where xi represents the state of service

center i. The representation of the state of the service

center is dependent on the type of service center.

3.2.6.1 Type 1 Service Center

If service center i is of type 1, then xi =

(xil ,xi2 ,...Xik), where k - ni is the number of customers

at center i and xij (1 < j < ni , 1 < xij < R) is the class

of customer who is jth in FCFS order. The first customer is

3-9

Analytical Modeling

served while the remainder are waiting for service. This

type of service center state space is very large since one

must not only account for the number of customers of each

type, but the order of the queue must be properly

represented.

3.2.6.2 Type 2 and Type 3 Service Centers

If service center i is of type 2 or 3, then

xi = (Vil F vi2 ,...viR), where Vir is a vector

(mlr I m2 r , ... mkr) where k = sir. The Ith component of

vir is the number of customers of class r in center i and in

the 1th stage of service. The number of stages for a class

r customer at service center i is sir* Note here that a

state is distinguished from another state by the number of

customers, the class of the customer, and the stage of

service of the customer, but not the order of the customers

at the service center since there is no waiting line for

these service disciplines.

3.2.6.3 Type 4 Service Centers

If the service center is of type 4, then

xi - ((rI , mI) ,(r2, m2), ... (rn ,mn)) where the ordered

pair (rj, m) describes the jth customer in LCFS order,

3-10

Analytical Modeling

i.e. rj is the class of the customer and mj is the stage of

service of the customer. Note again that like the type 1

service centers, a queue exists and one must take into

account the order of customers in the queue if there is more

than one class.

3.2.7 Calculating Equilibrium State Probabilities

3.2.7.1 Balance Equations

The balance equation technique for the solution of

equilibrium state probabilities is based on the concept that

the rate of customers transitioning into a state is equal to

the rate of customers transitioning out of the state, or

more formally, for all states, Sj,?

E P(Sj)[rate of flow Sj -->Si I
all states

SPCSS) (rate of flow out of S I

These are the global balance equations of the queueing

network. The balance equations establish a set of linear

equations which can then be solved for the equilibrium state

probabilities.

3-11

[----- .. I II

Analytical Modeling

A second type of balance equation for a queueing

network exists, that of independent (local) balance. This

concept equates the rate of flow into a state by a customer

entering a stage of service to the flow out of that state

due to the customer leaving that stage of service. A

customer can be associated with a stage of service in the

following ways

1. If the customer is in service at a service center
(always the case in type 2 or 3 service centers), then
he is in one of the stages of his service time
distribution at that service center.

2. If the customer is queued at a service center (only
possible for type 1 or 4 service centers), then he is
in the stage of his service time distribution he will
enter when he is next served. For FCFS this is stage
1; for LCFS this is the stage of service when last
preempted.

3.2.7.2 Product Form Solution

Before presenting the solution to this type of queueing

network, we must first define a few additional terms.

Additional Notation

Each of the subchains defined above has associated with

it a set of linear equations of the form

3-12

Analytical Modeling

eirPi,r;j,s + qjs ejs, (j's) Ek

(i,r) E Ek

where qjs is the rate of exogenous arrivals of class s

customers to service center j. If qjs=0 (j,s) Ek, then the

network is closed with respect to Ek. In the case of closed

networks, the above linear equations do not provide a unique

solution. By setting the value of one of the eij a unique

solution can be obtained. For convenience, one of the eir

is set to 1, which allows the rest of the eir to be

interpreted as relative arrival rates of class r customers

to service center i (relative in that the arrival rates eir

times the rate of the eir that was set to 1). Note that the

network may be closed with respect to less than m of the

subchains Ek.

One more term that appears in the product form solution

needs to be defined. This is the probability that the rth

class at service center i is in the 1th stage of service,

denoted as

1

AirlH airj

where air j is defined as in Figure 3-1.

3-13

Analytical Modeling

TheThor

For a network of service stations which is open,

closed, or mixed in which each service center is of type 1,

2, 3, or 4, the equilibrium state probabilities are given by

P(S - xl,x 2,...,xN) - C d(S) f1 (X1) f2(x 2)...fN(xN)

where C is a normalizing constant chosen to make the

equilibrium state probabilities sum to 1, d(S) is a function

of the number of customers in the system, and each f. is a1

function that depends on the type of service center i.

If service center i is of type 1, then

n.
n.

fi(xi) (i/ui) 1 [eixij]

j -1

If service center i is of type 2, then

R sir

fi(xi) nil f [I [eirAirl/uir]irl(i/mirl)

r=l 131

3-14

Analytical Modeling

If service center i is of type 3, then

R s mi
fi (xi 1 f f [eirAirl/uirlJ (/ImirlL)

r-l 1-1

If service center i is of type 4, then

ni

fi(xi) = [eirj Airm (1/u.rjMj

j=l

If the arrivals to the system depend on the total number of

jobs in the system, M(S), and the arrivals are of class r

and for center i according to fixed probabilities Pir' then

M(S)-l

d(S) - [x(i).
i-O

If we have the second type of state-dependent arrival

process, then

m M(S/Ej)-l

d(S) - 11 H
i-i i-0o

If the network is closed, d(S) - 1.

3-15

Analytical Modellug

3.2.8 Example Problem

To illustrate the concepts defined above, a very simple

example will be formulated. First, the global and

independent balance equations for the problem will be

defined using the "rate-in = rate-out" concept. Then the

Table 3-1 Transition Matrix and Service
Rates.

Probability Transition Matrices
I by Job Class

I Job Class 1 Job Class 2

1 0.6 0.4 0.8 0.2
II
I 1.0 0.0 1.0 0.0

I Service Rates by Job Class

I Node Job Class 1 Job Class 2

1 1.0 1.0 (processor
sharing) I

1 2 2.0 1.0 (infinite I
server) II I

I N " 2 N2 2 sir -1 R- 2
11I I

~3-16

Analytical Modeling

equilibrium state probabilities will be solved for using the

product form solution. These solutions will be verified by

substituting the values in some of the balance equations to

demonstrate that they do indeed solve the balance

equations.

The example will consist of a closed queueing network

with two service centers. There will be two classes of jobs

with two jobs from each class in the network. Service

center I will use the processor-sharing service discipline,

while service center 2 will use the infinite server service

discipline. This network is a very simple model of an

interactive time-sharing computer system where service

center 1 represents the computer and service center 2

represents the terminal users. The values of the

probability transition matrix and service rates are shown in

Table 3-1 along with a summary of the problem statement.

3.2.8.1 The Balance Equations

The state of the system can be represented as an

ordered 4-tuple (n11,n21 ,n12 ,n22) where the first subscript

represents the service center and the second represents the

class. Therefore, nll is the number of jobs at service

center 1 from job class 1.

3-17

Analytical Modeling

Given the transition matrix and service rates in Table

3-1, the state transition diagram is as shown in Figure 3-2.

Using the diagram in Figure 3-2 the global and local balance

equations can be derived. The global balance equations of

this example are shown in Figure 3-3. The local balance

equations are shown in Figure 3-4.

1 1,0,1,2 0,0,2,2

I

,u12 u 22 u 12 u 22 u 12 u 22

2,1,0, u21 " 1,,,1o
Iu 1

U 12 u 22 u 22 u 12 u 12 u 22

u 21 u 21

Figure 3-2 State Transition Diagram.

3-18

I I

I U|j!

++

CD

go +%

a Ow Go F44

ko C l + + C4

+ -I P-1 Cl I
r-4 FN P -

+ -4 - -+ac
N Nl u-I gou-

u-4 N - - r- 4
0-4 a NI a u-I

-- %0 - toC
*- %l 0 r- 1 - l

C4 % a k.I % 1-
+ +- + %. N + a 10
40 0 r. a -

FAI a% a 04 ena ~ -
Go %a N a EC4 a; r- + fn -I + C -

P- IC Cl P- +4 Cl V
0.4 C4 Cl uI CDI *r ao Cl * -

if a " 0
a + u-0 - -

-4 Cl +l u-I u--uI
a- + PCl + + u-I +EU

10 f a IC -I CDI Cl N- u-I a 4 -I -
C4 *- Cl P uI+0 N- N a N N a N

C4 r. s-I C4 u-I r4 a u-
N *q u-I r- - 4I (4 -t Cl r4 NC4 pq f-4 :5 u-I 0 04 4 l :3 N l

a4 u-I a4 C4 04 P- -I (4- P- -I Nu-I r .0
a -I a. u-I r7 u- 4 Cl u-I C;z0*

C4 a- +- N- +- CD 0 N C Cl +1 al N -I

04 a4 a, N4 a

NC 04 N 14 0 CC

N +

0- N C4

N. +

0-4 r-

N u-4 Nr.

+ + -% c
0 N 0-

N + N C4 +

N '-4 :3 N

+ N - -

+ N co4 C4 (4
r- r- + 0 p-I V- 4)

o-C-% - -. 9-.

C4 r- . N to
I % 01 II -I

r-4 '.0 N r.4 '-4 0 C.
C4 %. . 4 r -I 0.4 .

'- -f 0 - 0 iI -%N

++ +- 0 Q

+ + N + N ~ +

Nu- Go0 4

r- -4 + +4 + C4 b
+ N- .-. +- + 4 N a1

.. +- + N 0 Nl
0- - +- *- r4 - r- Cq

N + Nw
r-4 N N1

N .- 4 N N4 N N 0 Eu
C4 r-I-C4

N- N N -I F-I r-4 9-4 N - -
- f C9C -4 0 f N

% ftI + o ft % +. %

-4 C4 C4 (4 N N (4 040
0 C;C4 -4r0 0 r-4 0 0 -

4 N4 04 A A 4 N 04 NN

4 +

* ~0
0

+ 41a

1
oq + AlN

-

.

+
r.4

N a NN a a- l +o~~~1 +
+Da

-

N N N % +
r4-r14 N N1

p.4 p.4 p., -
a b a %

C) 0 C4i-
* 0 % .+ %b 0P Neq + r! ~ 1

r44

N
a+ Al

+ r-4 --%C aI~
P- N4ap~~

. -N%

F-N4-i-
C4 ..

4N- -I C V-4 . N C4 '--N4_' vI N
F- r.44

N P-4 .evN Z N _4
_ -4

O4 t 4 0 - 9 INN
-t;

C4% . C4% v-o '-

- p. 4N -4 N - 0 ' %- N ~
As4 40 04 04 04 at 0

0 * 0 * 0

C4C

+ + + + P+ 0

N - -- C4 C;F-

f- r-4 9-4

pCD
r4 F-44N -

- 9 - -9 9 -% 41

a ~ 4 u-4 a 9-4

cc 9-r--,4 N do r4

+~~~F4 '- -4+ + - +

N 04 4 0.4

Vo 9-4 7- "N-

+- 9-I r. -4 V- 9- 9- -

9-4r- r-4-4 N 0 -

-4 -4 .- I r-4 - - - - C

N C4 F- F- r-4 Ca N r4

+l r, 4- + C94 -

r- r-4 49N- -4 N 0

*q a o" *Z r-~ 4 *- 040

1-4 a k a 4 N 4 a4 a 94

N pI -4 a r -4 r- 0 94

+ + + + +0
C4 CNI C

++ + + to

C4 4 eqC4 CSI 0-

% %. I . %. * 4

C4 r4 C4 r- r:4 4I 14-4

P- r-44

co cc

N Ni0

N- CN C4 1- r.4 -I 0 4 o

f-4

~r- C4 040-0 40

(o C4 - U- I- 0 I

N (4 z- 1-4 1-9 04 =I 9 C4

V- 40 0 40 D N 0N

o4 4- +- +4 +4 N 4u
-- N0 N; -7 N

r- 4 N Cl C4 r 04 C* r-

ft %.%b-I%

v- N 4 = C4~ r-I CD -I r-I r- 0 Q= Q

0 4 - 14 04 1-4 04 1-

4=CI a; - N -- 4

u- N .~ N . -4 v. CN4= u4 N (4

Analytical Modeling

3.2.8.2 The Product Form Solution

Since there are no stages of service in either service

center, the function fl(x 1) and f2 (x2) can be simplified to

the following

2

f1 (xl) = nl! F [elr/ulrl Mr (1/mlr)
r=l

2

f2 (x2) = H [e 2 r/u 2 r] 2 r(/m 2 r!)
r=l

Solving for the eir above for this example, we get the

following linear equations for class 1 jobs

ell = .6e 1 1 + e21

.4ell = e21

and for class 2 jobs

e 12 a .8e 12 + e 22
.2e.12 e 2 2

which yield the following solutions for the eir'S

3-24

Analytical Modeling

e l l = 1.0

e21 - 0.4

e12 = J.'0

e22 = 0.2

Table 3-2 Example Calculations

I State fl(x1) f2 (x2) P(state)

1 (2,2,0,0) 3/2 1 1.5C - .670

1 (1,2,1,0) 3/4 .4 .3C = .134

1 (2,1,0,1) 3/2 .2 .3C - .0356

(1,1,1,1) 1 08 .08C = .0356

1 (0,1,2,1) 1/2 .016 .008C - .00356

(1,0,1,2) 1 .008 .008C - .00356

1 (0,0,2,2) 1 .0016 .0016C = .000715

1 (0,2,2,0) 1/4 .08 .02C - .00894

1 (2,0,0,2) 1 .02 .02C -.00894

2.2376C - 1 =>
C - .4469

The results of the computation are shown in Table 3-2.

The solutions can be verified by substituting them into some

3-25

Analytical Modeling

of the balance equations. For example, substituting the

equilibrium probabilities into the 24th independent balance

equation, we get

(.00894)(1)(2)(1) = (.134)(1)(1/3)(.4)

.01787 = .01787

and for the 17th balance equations

(.003575)(1)(1)(1) = (.00894)(2)(1)(.2)

.003575 a .003575

Therefore the product form solution of the above

theorem provides solutions to the balance equations of this

problem.

3.3 Chen's Swapping Model

The classical swapping model described in Chapter 1,

along with the inclusion of multi-class jobs and

non-exponential service times, provides a very flexible

model of a computer system and its job swapping behavior.

But the model still is not completely realistic; job

3-26

Analytical Modeling

swapping behavior is more complex and should depend on the

main memory size, the number of jobs competing for memory,

and the job sizes.

Chen (Ref 5) proposed a new approach: that job swapping

behavior be modeled by state-dependent routing probabilities

in a closed queueing network with a single class of jobs.

The probability that a program needs to be swapped in (or

out) is expressed as a function of the system state, the

individual job characteristics, and main memory size.

Unfortunately, this type of queueing model has no known

exact solution. Therefore, Chen developed a

successive-approximation algorithm that iteratively solves a

closed queueing network. When two successive iterations

yield results that are within specified tolerances of each

other, the swapping model is solved. Chen's model and

algorithm are described below.

3.3.1 Variables in the Model

First we will consider a simple model of an interactive

computer system described by Chen (Ref 5) and shown in

Figure 3-5. This system consists of one CPU, one disk, one

swapping drum, and a set of terminals. Queues exist for the

CPU, swapping drum, and disk, but no queue is necessary for

3-27

Analytical Modeling

the terminal node since there is a "server" (terminal user)

at each active terminal.

The variables in the model are

- Number of jobs in the system (N).

- Main memory size (user area) (M).

- Average job size (J).

- Average CPU service time (1/ul).

- Average disk I/O time (1/u2).

- Average time to swap a job in and out of memory Cl/u3).

- Average user think time (1/u4).

- Average CPU time needed per interaction (TcPu).

- Average number of disk I/O requests per interaction
(NDIo).

- Average job size (J).

These variables above are used to calculate the
probability transition matrix P - Pij where Pij is the

probability a job being serviced at node i will request the

service of the node j. In terms of the context of the

model, the meaning of some of the important Pij's are given

below

P43 The probability that the job is not in main
memory and needs to be swapped in.

P41 The probability that the job is already inmain memory and does not need to be swapped

in.

3-28

A 4 0

04-

- -- I

~ I'
I '

I

I - --- V

-0.

U-

- 0.

4

Analytical Modeling

The probability that the job's time quantum
11I has expired

The probability that the job needs
12 information on a disk file or needs to write

its results to a disk file.

P13 The probability that the main memory size is
not sufficient and the job must be swapped
out.

The state-dependent probabilities in Chen's algorithm are

P11 ' P43 ' P41, and P13. Note that P41 and P13 are always

zero In the simpler classical swapping model contained in

Chbptz 1. A general form of the probability transition

matrix in Chen's model is shown in Table 3-3.

3.3.1.1 Derivation of P14 and P12

Consider a typical sequence of events where 'i'

represents the job leaving the CPU for an interaction at the

terminal node and 'c' represents the job requesting another

CPU service of 1/u1 seconds (on the average). A typical

sequence would then look like

cc.. .cicc... cicc...

The number of CPU requests before an interaction would then

be geometrically distributed and the average number of CPU

service completions per interaction, NCpU, would be

3-30

Analytical Modeling

NC = kPl4(l - P14)k1 - I/P14CPU k-i1

(1)

Table 3-3 Probability Transition Matrix
for Chen's Swapping Model

I P1 P12 P13 P14

1 1.0 0.0 0.0 0.0
II
1 1.0 0.0 0.0 0.0

I P41 0.0 P43 0.0
II

The average CPU time needed per interaction is equal to the

product of the average number of times the job requests CPU

service times the service rate or

TCpU - 1/uI N cpU = (1/u11 (l/P14)

therefore we have

P14 " 1/(u1 T CPU)
(2)

It follows immediately that since there are NCpU CPU service

completions and NDIO of them must have been due to an I/O

3-31

Analytical Modeling

request, then

P12 ' NDIO/NCPU - NDIO P14

(3)

3.3.2 Program Swapping Behavior

The job swapping behavior is represented by the

state-dependent routing probabilities P43 and P13. Since

there are several memory management schemes that can be

implemented in an operating system, the expressions for P43

and P13 will vary from system to system. Chen derived

expressions for these probabilities that are reasonable for

the TOPS-10 Monitor on the DECsystem-10. Their derivations

and the assumptions for their derivations are discussed

below.

3.3.2.1 Derivation of P43

The assumptions made for deriving P43 are as follows

(Ref 5:955)

1. Each job in the main memory is allocated the same
amount of memory. Therefore, the maximum number of
jobs that can be allocated in the main memory
simultaneously is a constant and denoted by A.

A iM/JI

3-32

Analytical Modeling

This assumption is justified since main memory is
partitioned into a fixed number of parts and
interactive jobs usually will fit in the same number
of partitions.

2. Among all jobs in the main memory, the jobs in the
"think" mode have the highest priority to be swapped
out if memory space is needed for the jobs to be
swapped in. This assumption is justified since many
computer systems use this memory management strategy
(Ref 5). Jobs in the "thinkw mode are very unlikely to
need CPU service in the near future. This is true
since the average think time is measured in seconds,
while most other activities in the system occur in the
millisecond or even microsecond range. In the
DECsystem-10, jobs contained in the TIOWQ
correspond to jobs in the think mode.

Let ni denote the number of jobs at node i. If the

total number of jobs in the system is less than the number

of jobs that can fit in memory (N < A), then no swapping

activity is necessary. In most cases, though, N is greater

than A, and so N - A jobs cannot be in memory. Since the n4

jobs in the think mode have the highest priority to be

swapped out (Assumption 2), these will be swapped out until

N-A jobs are swapped or until all jobs in the think mode are

swapped out. Therefore, the probability that a job needs to

be swapped in at the beginning of an interaction, P43 ' is

equal to the probability that a job in the think mode is not

3-33

Analytical Modeling

in main memory. Chen uses the approximation

(N-A)/n 4 n4 > N -A and N > A

P43 0 N $A

1 n4 N -A

(4)

and therefore the probability that a job does not need to be

swapped in at the beginning of the interaction is

P41 = 1 -P 43

(5)

3.3.2.2 Derivation of P13

To derive P13' two more assumptions must be made (Ref

5:955)

1. P is linearly related to the difference between
nQaber of active jobs (n +n +n3) and the maximum
number of jobs (A) that c 2 fit3 in memory, if that
difference is positive. The difference, n +n+n 3 -A,
is the number of jobs which need memory bt an not
have it. When this difference is positive, then some
of these jobs as well, as the jobs in the think mode,
must be swapped out. When this difference is less
than or equal to zero, P1 is zero. This models the
TOPS-10 Monitors swappingliehavior of choosing jobs in
long-term wait queues, e.g. interactive jobs waiting
form terminal response or batch jobs waiting for a
tape to be mounted, over jobs that are in the
processing queues and more likely to run.

3-34

Analytical Modeling

2. In the worst case,the maximum number of times that a
job will be swapped out before the end of the
interaction is one. This assumption represents the
ICPT's effect of locking the job in memory

Assumption 1 tells that P13 reaches a maximum when

n 1+n2+n3 reaches its maximum value N. This maximum value can

be determined using similar reasoning used in the derivation

of Equation (3). By assumption 2 the maximum number of times

a job can be swapped out is one. So the maximum probability

of being swapped out is

P =N IN 1(/
13 SWAP CPu = /(1/P 14) = P14

Therefore, from assumption 1, P.3 varies linearly from 0 to

P14 as n1+n2+n3 varies from A to N. Noting that P11' P12 '

P13' and P.4 must sum to 1, thus being bounded by I-P12-P1 4,
and combininq the above observations, we have

min[l-P 12-P14, P14 ((n1+n2+n3-A)/(N-A))]

S1 n1+n2+n3 > A and N > A

(6)

0 otherwise

and therefore

Pll , 1-P13-P12-PI4

3-35

Analytical Modeling

to insure the probabilities sum to one.

3.3.2.3 Approximation Algorithm

The above formulation makes the probability transition

matrix of Table 3-3 dependent on n4, i.e. the probability

transition matrix is state-dependent. Unfortunately, this

queueing network model has no exact solution known, so Chen

proposes using the following approximation algorithm (Ref

5:956)

Step I Assume an initial value for n4 -

Step 2 Use n to calculate P43 and P13 by Equations
(4) a~d (6).

Step 3 Solve the model as a closed queueing network
with fixed probabilities using Buzen's
method.

Step 4 If the new value of n is very close to its
previous value, th algorithm stops.
Otherwise, Steps 2, 3, and 4 are repeated.

According to Chen, the algorithm will always converge

since the sequence of computed values of n4 is either

monotonically increasing or decreasing and 3 bounded

between 0 and N. Also, from Chen's computational experience,

the algorithm converges to the same point, independent of

its starting value.

3-36

Analytical Modeling

3.4 Chapter Summary

The following items are the important points brought

out in this chapter

- Early models developed by Gordon and Newell, Jackson,
and Buzen where restricted to single class networks
with exponential servers. Baskett, et. al.
consolidated later models which included multi-class
networks and the method of stages to form one unified
model.

- The Baskett, et. al. model provided a more accurate
model of time-sharing systems, but the model still was
not completely realistic; job swapping behavior is more
complex and should depend on the main memory size, the
number of jobs competing for memory, and the job
sizes.

- Chen developed a model to make job swapping behavior
depend on memory size, the number of jobs competing for
memory, and the jobsizes, but failed to include the
more general multi-class queueing networks. Also, his
development only considered the single CPU and single
disk system, and left the multiple CPU and multiple
disk system as an extension.

In the next chapter we will look at the structure of

the McKenzie FORTRAN program and how it was modified to

include Chen's algorithm. Combining McKenzie's program with

Chen's algorithm extended the Chen algorithm to multiple

classes.

3-37

Chapter 4

Computer Implementation

The computational effort for the product form solution

of a queueing network can be quite large for anything but

very simple networks (see example in chapter 3). Therefore,

to compute the solutions to queueing networks containing

many nodes and job classes, one must perform the

computations for the product form solution on a computer.

The first section in this chapter describes the

McKenzie computer program. This is followed by a section

describing the modifications made to McKenzie's program to

implement Chen's swapping model. After the Chen

modifications are described, the next section discusses some

of the pitfalls and problems encountered in this current

effort to modify the program. The last section summarizes

the chapter.

4-1

Computer Implementation

4,1 The McKenzie Program

In 1977 McKenzie developed a computer program to solve

multi-class closed queueing networks with service centers

having different service disciplines. This program provides

a flexible tool to model interactive computer systems, but

is limited to product form solutions of closed queueing

networks. The program was modified to include Chen's model

(see Chapter 3) to more accurately model job-swapping

behavior.

4.1.1 Program Capabilities

The computer program is based on the model of Baskett,

et. al. (Ref 2) and the computational algorithms of Wong

(Ref 30). Wong's computational algorithms implement a

subset of the entire Basket et. al. theory. The limitations

of the model are

- No outside arrivals can enter the network, i.e. the
model is a closed queueing network.

- Jobs cannot transition from one job class to another at
a service center.

- The third type of state-dependent service rate is not
contained in the model. (see Chapter 3 for the types
of state-dependent service rates)

4-2

L|

Computer Implementation

4.1.2 Program Structure

McKenzie's computer program was written in FORTRAN IV.

The program is modular in nature. It is divided into five

subroutines called from the main program. The names of the

subroutines and their functions are described below

INDATA Reads the data necessary to run the program.
The characteristics of the time-sharing
computer system being modeled are input in
this routine.

FUNCT Calculates the values for the functions in
the product form solution for each node in
the network. These are used to calculate the
joint and marginal probability density
functions for each node.

NORMAL Calculates the normalization constant for the
model. The normalization constant assures
that the system state probabilities sum to
one.

MARGIN Calculates the marginal probability density
functions for each node in the network.

EXPECT Calculates the probability that there are k
users of class j at a node and the total
probability over all classes of jobs that
there are k users at a node. Using these
probabilities, it then calculates node
utilizations by job class, expected queue
length probability distribution and their
expected values by job class, mean time spent
at each node by each job class, and system
response times by job class.

In addition to these programs written by McKenzie, five

other routines peculiar to the CDC computer at AFIT are used

WRITMS A random access routine to write records to
mass storage.

4-3

Computer Implementation

READMS A random access routine to read records from
mass storage.

OPENMS Initializes a file for random record reads
and writes.

CLOSEMS Updates the master index in the file after
all records have been read or written.

LEQTIF A subroutine that solves simultaneous linear
equations.

The documentation on the random record routines is contained

in reference 7. LEQ1TF documentation is contained in

reference 13.

The WRITMS is used at the end of INDATA, FUNCT, NORMAL,

and MARGIN to save the computed values for each node on a

random access file for further processing by the next

subroutine. The READMS is used at the beginning of FUNCT,

NORMAL, MARGIN, and EXPECT to retrieve the results of the

calculations for each node from the preceding routine in the

program flow (see Figure 4-1). OPENMS and CLOSEMS are used

at the very beginning of the program and the very end of the

program. The calculations are done node by node since the

memory requirements necessary to store the entire network's

state space would exceed the CDC computers memory resources

for all except trivially small networks.

The subroutine LEQ1TF is used in INDATA to compute the

node departure rates using the probability transition

4-4

Lnod,

Computer Implementation

matrices and node service times for each class.

I I

I INDATA I
I I

I I

I FUNCT I
NRA I

II I
I I FNCRMA I
1 II

II I I

I MARGIN I
I _ _I I
1 1 I

II I I

SEXPECT ICi I
I ~II
I ~II

Figure 4-1 McKenzie Program Flow Chart

~4-5

I II
I

I STOP

I • m I

Computer Implenentation

4.1.3 Program Inputs

The program inputs and formats are described in detail

in Appendix C of McKenzie's thesis and will not be discussed

here.

4.2 The Chen Modification

4.2.1 Program Structure

To implement Chen's algorithm, McKenzie's program had

to be modified to

1. Read in the system configuration data necessary to use
- Chen's algorithm.

2. Compute the initial probability transition matrix for
each class of job using the input data and Chen's
formulae discussed in Chapter 3. The initial
probability transition matrix is computed using Chen's
formulae and then converted to the transition matrix
for the classical swapping model.

3. Recompute the probability transition matrix for each
class based on results from the previous iteration.
Use this new probability transition matrix to compute
the product form solution to the corresponding
queueing model.

4. Stop iterating if the solution has converged, i.e.
the absolute difference between the number of jobs ih
the think mode calculated in the previous iteration
compared to the current iteration is within a
specified tolerance, or if the maximum number of
iterations allowed has been exceeded.

4-6

Computer Implementation

These modifications were localized to the main program

and two subroutines in order to retain as much of McKenzie's

structure as possible. INDATA was almost completely

rewritten in order to read in the variables in Chen's

model. One major benefit in this modification is that input

to the model is now read in freefield format, i.e. data does

not have to appear in certain columns in the data file.

This will decrease the chance of human error when typing in

the input to the model.

EXPECT was slightly modified in order to stop it from

printing the results of every iteration. Now the results

are printed for the first iteration, every fifth iteration,

and then the final iteration.

The major changes to the McKenzie program to include
Chen's algorithm were incorporated in the subroutines CHEN75

and COMPUTE. At the beginning of each iteration, CHEN75 is

called, which in turn calls COMPUTE to recompute the

probability transition matrix for each class of job in the

network using the formulae from Chen's model.

Chen's model was also extended to include multiple disk

drives. Given that a job from a particular class needs a

disk I/O, one must define the disk access probabilities for

4-7

.. S I

Computer Implementation

each disk in the system. Defining NDISKS to be the number

of disks in the system, and PDIO(i) the probability of

performing the disk I/O on the i th disk, then the

probability transition matrix is modified as shown below

P1l P12*PDIO(l)...Pl(N + l)*PDIo(NDISKS) P13 P14

1 0 DISKS 0 0 0

* . (NDIsKS times)

1 0 ... 0 0 0

P41 0 ... 0 P4 3 0

To conform to normal probability transition matrix notation,

the subscripts are renumbered. For example, in the case of

a system with six disks, the subscripts are changed so that

P13 becomes P18, P14 becomes P19' P41 becomes P91, etc.

The changes described ibove are illustrated in the new

flow chart for the program shown in Figure 4-2.

4.2.2 Program Inputs

The input to the new program is simpler now, since all

input data values are read in freefield, instead of

requiring the values to be in particular columns. All that

4-8

Computer Implementation

I I
I ~II

I New I
I INDATA II _ _ _I I

i R times (# of classes) II I _ _ _ _ _ _

I I ------ >1 I I
------------ >1 CHEN75 I I COMPUTE I

I I I _ _______1< ------ I_ _ _ _ _IIIIII
I I -

III II
I FUNCT I

IIII I

III I
I NORMAL I

IIIII

III I
I MARGIN I
I II I

I New I
I EXPECT I

N STOP

I I

Figure 4-2 New Program Flow Chart

4-9

Computer Implementation

is necessary is that the input data values be separated by

at least one space. The data could be entered on one line

until that line is filled up and continue in that fashion

for subsequent lines. Instead, it is recommended that the

data be entered in the following manner (the names in

capital letters are the FORTRAN variable names)

- Netvork description. Enter the number of nodes and
number of job classes in the network.

NODES, ITYPES

- Computer system configuration. Enter the number of
disk drives in the I/O subsystem and the size of main
memory available for user jobs.

NDISKS, SIZEMEM

- Workload configuration. If possible, enter the
following workload configuration parameters on separate
lines

1. Disk access probabilities by class for each
disk. If possible, put the probabilities for
each disk on separate lines. There would then be
NDISKS lines.

DISKPRB(I,J) (probabilihy that a member
of the j cla!R
accesses the i disk)

2. Job class characteristics. Put the
characteristics for each class on a separate
line. This includes the number of jobs in the
class, the CPU time per interaction (T .), the
number of disk I/O's per interaction (t), and
average job size of the class. There BR~ild be
ITYPES lines of job class characteristics.

4-10

Computer Implementation

(NUSERS(J), TCPU(J), DIO(J), SIZEJOB(J))

- Node characteristics. The node characteristics include
the following

1. Node type (FCFS (NODETYP(I)-l), PS
(NODETYP(I)-2), IS (NODETYP(I)=3), and LCFS
(NODETYP (I) -4)).

2. Types of state-dependent service rates can be
None (IDEP(I)-l), number of total jobs at node
(IDEP(I)=2), number of jobs in a particular class
at the node(IDEP(I)=3).

3. Service rate for job class J and node I
(SERVICE(I,J)).

4. State-dependent service rates. If IDEP(I) was
not 1, then the state-dependent service rate data
must be entered. The entered values represent
the ratio of the service time when there is a
total of one job at the node (IDEP(I)=2) or when
there is one job of a particular class
(IDEP(I)=3). For example, to model two identical
servers, one would set IDEP(I)-2 and enter

1.0 2.0 2.0 ... 2.0

into array (DEP(I,l,K),K-l,MAXUSER) The number of
entries is equal to the maximum number of users
of all types in the network (MAXUSER).

4.3 Programming Notes for Future Modification

If future thesis students decide to work with the

program used in this thesis, the student should be aware of

some possible pitfalls. The problems encountered when

4-11

Computer Implementation

making changes to the program are described in the following

paragraphs.

The original McKenzie program depended on the operating

system to initialize the variables in the model to zero.

Unfortunately, the CDC NOS/BE operating system no longer

zeros out the memory locations before loading a program, but

instead sets them to a special value signifying an

indefinite value. In the process of modifying the program,

all uninitialized variableL were initialized to zero for

each iteration. Some variables may have slipped by, though,

so if any "Error Mode 4-- Indefinite Valuew messages appear

after modifying the program, check for uninitialized

variables.

In order to have a variably dimensioned array passed to

a FORTRAN IV subroutine, one must not only pass the variable

dimension value, but also the memory space (in the form of

an array from the main program). That is the reason the

subroutine parameter lists are so large. Unfortunately, if

one passes incorrect dimensions of a passed array to the

subroutine, no syntax error is generated. Instead, when the

program is run, it will produce one of possibly several mode

errors. Therefore, when making any changes to the

dimensions of the arrays in the main program, be sure to

4-12

77-AD-A115 565 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFS ON SCHOO--ETC FIG 912
MULTI-CLASS ANALYTICAL MODELS OF THE DECSYSTEM-10 JOB-SWAPPING -ET C((1

UNCLASSIFIED AFITIGOR/MA/SID-4 N

NONEmmmmmmu
hhhhhmhhhme_

Computer Implementation

change the appropriate variables (MAXNODE, MAXTYPE, MAXUSER,

MAXSTAT, MAXUSEl, and ISIZE3) to match the true dimensions.

Finally, one must be careful that the inputs for the

model are consistent. Specifically, a common and somewhat

obscure error is to define a probability transition matrix

that unintentionally isolates a node from the network. This

causes the departure rate from that node to be zero. When

the subroutine FUNCT is called to compute the functions used

in the product form solution for that transition matrix,

that zero value is used as a base in an exponential

expression (line 34) which can have a zero exponent. Since

zero to the zero power is undefined, another mode error is

produced; this time "Error Mode 2--infinite operand".

Therefore, always make sure the probability transition

matrix used in the computations is well-defined.

4.4 Chapter Summary

In this chapter, we have reviewed the basic structure

of the McKenzie program and the functions of its five

subroutines. The modifications made to this program were

identified, and the new subroutines CHEN75 and COMPUTE

discussed. The modifications were made with the objective

J41 i 4-13

Computer Implementation

of retaining as much of the original McKenzie model as

possible. All of the changes to the original program were

in the main program, INDATA, and EXPECT. The addition of

Chen's algorithm was accomplished by including CHEN75 and

COMPUTE. Finally, some programming notes on this author's

experience with modifying the program were presented.

Briefly, these included

1. If any "Error Mode 4-- Indefinite Value" messages
appear after modifying the program, check for
uninitialized variables.

2. When making any changes to the dimensions of the
arrays in the main program, be sure to change the
appropriate variables (MAXNODE, MAXTYPE, MAXUSER,
MAXSTAT, MAXUSEl, and ISIZE3) to match the true
dimensions.

3. Always make sure that the probability transition
matrix used in the computations is well-defined.

With this modification to McKenzie's original program,

we now have a new tool to model interactive computer systems

which considers multi-class job-swapping behavior as a

function of main memory size, the number of jobs competing

for memory, and the job size. Chapter 5 presents the

results of using the multi-class Chen swapping model and the

classical swapping model on three hypothetical workload

models.

4-14

Chapter 5

Analytical Modeling Results

This chapter contains the results of modeling the

DECsystem-lO using the single-class and multi-class Chen

swapping model on a realistic, though hypothetical

interactive/batch workload configuration. The workload was

modeled using three alternate approaches.

The first section discusses the three alternate

approaches used to model the workload configuration. The

next section describes the system configuration used to

model the DECsystem-10. The third section presents the

results of two model comparisons: Chen's swapping model

versus the classical model and the multi-class versus the

single-class Chen swapping model.

5.1 Modeling Interactive/Batch Workloads

When a CPE analyst is faced with the task of analyzing

the performance of an interactive computer system containing

5-
i 5-1

Analytical Modeling Results

batch jobs with an analytical model, he has the following

alternatives

1. Characterize the interactive and batch job classes
separately and use a multi-class queueing model.

2. Use a single class model and make one of following
commonly used approximations

- Create a single, average job class by aggregating
the characteristics of the individual classes.

- Assume the impact of batch jobs is minimal, and
use a single class with the characteristics of
the interactive jobs. This approach was used by
Chen in his original work.

5.2 DECsystem-10 System Configuration Parameters

Because of the large number of system configuration

parameters which can be varied within the models, an

infinite variety of system configurations could be

analyzed. A subset of them were arbitrarily fixed in order

to compare modeling approaches. These configuration

parameters can be divided into two types: hardware and

workload.

5.2.1 Hardware Parameters

The hardware configuration parameter values were chosen

to model as closely as possible the Avionics lab

S

i 5-2

Analytical Modeling Results

DECsystem-10 hardware configuration. These hardware

parameters are given in Table 5-1. The hardware

configuration includes two CPU's, six disk drives within the

I/O subsystem and one swapping device.

Table 5-1 System Configuration Parameters

Hardware Parameters

I Number of Disks - 6

I Number of CPU's = 2

I Number of Swapping Devices - 1

Workload Parameters

I Number of Jobs 30 10 1
I Job Size (K) 5 10 1
I CPU quantum .0125 .015
1 (sec)
I Disk Access
I Probabilities Equal Equal
I Disk Service
I Times (sec) .075 .075
I Long-term wait I

Service (sec) 8.0 1.0 1
I Job Swap Time
I (sec) .1 .2
1 CPU (sec) .1 .5
1 NDIO 4.0 5.0

5-3

Analytical Modeling Results

5.2.2 Workload Parameters

The workload configuration parameter values shown in

Table 5-1 were selected to model typical interactive and

batch jobs. These values are within the range of values

used by Chen to assure their reasonableness.

Additional knowledge of the DECsystem-10 and of

interactive and batch jobs in general were used to set the

relationships between the magnitudes of the workload

parameters. These are described below for each workload

parameter.

Job Size The above job sizes are within the range of
job sizes used by Chen. The interactive job
size was chosen smaller than the batch jobs
since this is true on the average.
Interactive jobs include many editing,
compiling, and other utility programs which
have small memory requirements. Batch jobs,
on the other hand, include the running of
large application packages such as SPSS,
SLAM, etc.

CPU Quantum This value corresponds to the jiffy described
in Chapter 2. The maximum CPU quantum is one
jiffy (.01667 seconds), disregarding overhead
of the operating system. When overhead rates
of 10-25% are included, the CPU quantums have
the values of those above. Interactive jobs
usually have more overhead, since they deal
more with system utilities. Batch jobs
usually are large, number-crunching
applications, and utilize little overhead.

Disk Access Probabilities
Since no other information was available
these probabilities were arbitrarily chosen
to be equal for all disks and for all job

5-4

V./

Analytical Nodeling Results

classes to simplify the analysis.

Disk Service Times
These times were again arbitrarily chosen to
be equal for all disks and for all job
classes. The value of the service time is
consistent with the times used by Chen.

Long-term Wait Service Time
The value chosen for the interactive job
class represents the wthinku time for the
user (the time to make a response to the
computer) as well as the other long-term wait
service times common to both interactive and
batch jobs, e.g. command wait or DAEMON wait
described in Chapter 2. The value selected is
consistent with the values used by Chen.

Since jobs in the batch job class do not have
a "think" time, but do enter other long-term
wait states common to both interactive and
batch jobs, the batch job class was assigned
a long-term wait service. No information was
available to determine typical values for
long-term wait service times for batch jobs.
The batch long-term wait service time was
chosen to be significantly less than the
interactive long-term wait service time since
the long-term wait states possible for batch
jobs require considerably less time to
satisfy, and are therefore, much faster than
the Othinkm time of an interactive user.

Job Swap Time The values selected are consistent with the
values used by Chen. The swap time for the
batch job class should be larger since there
is more batch job memory to swap. The batch
job swapping time was arbitrarily doubled to
take this into account.
The values selected for the CPU time per

TCPU interaction are consistent with the values

used by Chen. The CPU time per interaction
for interactive jobs is lower than the value
for batch jobs because interactive jobs are
generally less CPU-intensive then batch
jobs.

NDI0 The values selected for the number of disk

5-5

Analytical Modeling Results

I/O's per interaction are reasonable
considering the values used by Chen. Since
the number of disk I/O's per interaction for
interactive jobs is lower than the number of
disk I/O's per interaction for batch jobs,
the natural conclusion to draw is that the
batch jobs are more I/O-intensive than the
interactive jobs (usually the opposite is
true). A more insightful approach shows that
the interactive jobs are the more
I/O-intensive. Equation 3-1 gives the formula
for the number of CPU quantums received per
interaction, N . This formula and Equation
3-3 yield a %lue of 8 and 33 1/3 for
interactive and batch jobs, respectively.
Now the values of N are more meaningful.
In the case of the iPRAractive jobs, half of
the CPU quantums were terminated due to disk
I/O requests, while in the case of the batch
jobs, only 15 percent of the CPU quantums
were terminated due to disk I/O requests.
Therefore in this workload configuration, the
interactive jobs are the more I/O-intensive.

5.2.3 DECsystem-10 Swapping Model

The multi-class Chen swapping model derived from the

above system configuration is shown in Figure 5-1. Note that

the probabilities and service times for the network are

class dependent (r). Node 1 corresponds to the two CPU's;

nodes 2 through 7 represent the I/O subsystem containing the

6 disk drives; node 8 models the swapping device; and node 9

represents the long-term wait service node.

The following are definitions of the important

probabilities in the network

P9lr P91r is the probability that the job in class

5-6

La:17. m
C14 -I

:3 :%L

ca M

-m

I 0

0

I.44

-- 4
___T_______

9 V______W_

Analytical Modeling Results

r leaving a long-term wait state (the "think"
mode for interactive jobs) is already in
memory and can proceed directly back to the
CPU (analogous to P41 in Chen's original
model).

98r-P is the probability that a job in class r
rl ing a long-term wait state (the "think

mode for interactive jobs) must be swapped
into memory (analogous to P43 in Chen's
model).

P18r P is the probability that a job in class r
8fishing its CPU quantum, must be swapped

out to make room for another job which is
ready to execute, but has been waiting for
memory (analogous to P13 in Chen's model).
P for j = 2,3...7, are the probabilities

Pljr J job in class r going to the various
disks in the I/0 subsystem from the CPU
(analogous to P12 in Chen's model).

5.3 Model Comparisons

5.3.1 Definition of Performance Measures

The following are definitions of the performance

measures considered in these comparisons (Ref 29:10-12)

CPU utilization
The percent of time the CPU is processing a
job.

Swapper utilization
The percent of time the swapping device is
swapping in or out a job.

5-8

Analytical Modeling Results

Response Time Elapsed time between entering the last
character of a request at a terminal and
receiving the first character of the
response.

5.3.2 Tabular Results

The results of the models are shown in Tables 5-2

through 5-4. Table 5-2 contains the performance measure

results for the classical swapping model with the three

workload cases. Table 5-3 contains the results for the Chen

swapping model with the three workload cases. Table 5-4

shows the behavior of the probability transition matrix for

different main memory

Table 5-2 Classical Swapping Model Results

Performance Measures

I Workload CPU Swapper Response
Cases Utilization Utilization Time I

(I (%) (sec)

I Two Class 100.00 33.46 6.750 1
1 Average 99.98 33.23 8.756 1
1 No Batch 81.05 26.97 3.122 1

Important Probability Matrix Values

Pllr P18r P91r

I Two Class .466/.933 0 0 1
1 Average .699 0 0 1
1 No Batch .466 0 0 I

5-9

Analytical Modeling Results

Table 5-3 Chen Swapping Model Performance Results

CPU Swapper Response
Memory Workload Utilization Utilization Time
(K) (%) (%) (sec)

Two Class 98.78 6.44 .828
240 Average 70.95 4.00 1.083

No Batch - - -

Two Class 98.58 25.72 .847
200 Average 70.80 16.00 1.107

No Batch - - -

Two Class 97.94 51.14 .895
150 Average 70.51 32.00 1.154

No Batch - - -

Two Class 95.84 75.24 1.022
i100 Average 70.05 48.00 1.227

No Batch 30.11 12.50 .504

Two Class 89.15 93.06 1.400
50 Average 69.24 64.01 1.350

No Batch 29.95 25.00 .557

Two Class 87.07 95.10 1.521
40 Average 68.95 67.89 1.407

No Batch 29.91 27.50 .570

Two Class 85.12 96.48 1.640
30 Average 68.65 71.28 1.458

No Batch 29.87 30.00 .583

Two Class 84.21 96.99 1.697
20 Average 68.49 72.81 1.484

No Batch 29.83 32.50 .598

Two Class 82.52 97.76 1.804
10 Average 68.18 75.54 1.536

No Batch 29.78 34.99 .613

5-10

Analytical Modeling Results

Table 5-4 Important Probability Matrix Values

Memory Workload Pllr P18r P91r
(K)

Two Class .374/.820 0 .934 1
240 Average .521 0 .941 1

No Batch - - -

Two Class .374/.820 0 .735 1
200 Average .521 0 .7641

No Batch - - -

Two Class .374/.820 0 .468 1
150 Average .521 0 .526 1

No Batch - - -

Two Class .374/.820 0 .188 1
100 Average .521 0 .282 1

No Batch .374 0 .641 1

Two Class .359/.816 .015/.003 0 1
50 Average .521 0 .025 I

No Batch .374 0 .286 I

Two Class .351/.814 .023/.005 0 1
40 Average .519 .002 0 I

No Batch .374 0 .214 1

Two Class .344/.812 .030/.007 0 1
30 Average .515 .006 0 1

No Batch .374 0 .141 1

Two Class .341/.811 .033/.008 0 1
20 Average .513 .008 0 1

No Batch .374 0 .068 1

Two Class .335/.810 .039/.009 0 I
10 Average .510 .011 0 1

No Batch .374 .000 0 1

5-11

Analytical Modeling Results

sizes and workload cases. The Chen versus classical

swapping model is discussed first to verify the Chen

swapping algorithm results. Then a comparison between the

two class model versus the single-class models is

presented.

5.3.3 Chen's Versus the Classical Swapping Model

The following paragraphs consider the impact of using

Chen's swapping model versus using the classical swapping

model. The performance measures will be utilization of the

CPU and the swapping device, and the response time received

by the interactive users. The results shown are only for

the two class model. Similar results were achieved with the

average class model and the no batch model.

5.3.3.1 Probability Structure

The primary difference between the classical swapping

model and Chen's swapping model is that Chen's probability

transition matrix is dynamic, i.e. the probabilities in the

matrix are dependent on the main memory size, the number of

jobs competing for memory, and the job sizes.

The Figure 5-2 is a plot of the data in Table 5-4 for

the two class workload model. It illustrates the dynamic

5-12

- @1

a. a. a

00
V.m

N0

0 + 0

NA

0

+0

4--

+ xi

Go %40 C

Analytical Modeling Results

relationship between the state-dependent probabilities and

main memory size produced by the two class workload model.

In the classical model Pl8r and P91r would be zero and Pllr

would be constant. With Chen's model, the probabilities

have some interesting properties

- Plr behaves "classically" (P91r-0) from zero to
a roximately 70K of main memory. At that point the
Chen approximation takes effect and P steadily
increases to a probability of one at 2f of main
memory.

- P and P behavior is reversed. For ranges of main
m@gry bet n 70K and 250K, the probabilities behave
"classically" (P -constant, Pl =0)* Between 10K and
approximately +6 of main 8rmemory, the Chen
approximation takes effect. In this range, P is
inversely proportional to Pl8r' i.e. Pllr'S gh is
P18r's loss.

Similar phenomena occur in the average class model and the

no batch model.

The rationale for the behavior of P91r is as follows.

For small amounts of main memory, all jobs in long-term wait

will be swapped out to make room for other jobs waiting for

memory. Hence, whenever a job gets blocked at the CPU and

goes to a long-term wait state, it will be swapped out and

must therefore always be swapped back in when it finishes

its long-term wait service. For large amounts of main

memory, there is enough memory to satisfy all memory demands

as well as keep all jobs in in a long-term wait state in

5-14

Analytical Modeling Results

memory. As main memory size approaches 250K, an increasing

number of jobs in a long-term wait state may stay in

memory. Therefore, this increases the probability that a

job leaving a long-term wait state will already be in main

memory and need not be swapped in.

The rationale for the behavior of Plr and Pl8r is as

follows. For large amounts of main memory, there is enough

for all executable jobs to remain in memory. As main memory

size gets smaller, a larger number of jobs in long-term wait

are swapped out. This continues until all jobs in the

long-term wait states swapped out. After all the inactive

jobs have been swapped out, the Job Swapper must start

swapping out jobs that are executable in order to make room

for other jobs in the system. Therefore, jobs expiring

their CPU quantum now have higher probabilities of being

swapped out, instead of returning to the end of the CPU

queue for more service (P18r becomes larger).

5.3.3.2 Performance Predictions

The figures 5-3 a) through 5-3 c) are plots of the data

contained in tables 5-2 and 5-3 for the two class model.

The horizontal lines on each plot represent the values

predicted by the classical model, while the data points

5-15

p.

S
.3

- 0
* K

.3
* p. 0
Ed o N
* p. 0

- U
~ U
* 4

' -
U U

0
I 0 0

N

S
U
U
4
p.
U

0 - 0 _

"S

* 4
N
* A

0 K
0 0 WI

1-4
S

S
p.

be

* 4 0
I-

0 I
0 I

* I
0 1

o 0 0 0
o N

Cl; S S S- 1-4

(@0S) OWIL ..uedO0U

0

0

- 0*

00

* - 0

- 0S.

CO N

*0~sj4 se4n

0
.5

- S
* ~

.5
* -
~ Uo
* *"

- * N* a .
* U
a -

U U*1
S
S
S
S
U

0 U
6

'.4

Ii
a
I *

0 0 *
o ~
1-4 U,

S
Ii
p
S

hi
0 0

V.'
0

S

6

S

1~~~
0 0 0 0 0o '0 4 N
1-4

(%) uO~~SK~fl Ad~

S

Analytical Modeling Results

represent the values predicted by the Chen model at each

memory size. Note the sensitivity of the performance

predictions due to the effects of main memory size in Chen's

swapping model. Specifically, the following effects are

modeled in the Chen swapping model

- In the range from zero main memory to the main memory
size at the intersection of the Chen swapping model
curve and the classical swapping model curve
(approximately 70K for the two class model), the Chen
model includes the effect of swapping out executable
jobs on the performance measures (P). Compared to the
classical swapping model, the Chen 14apping model shows

* Increased response time and swapping utilization
caused by increased swapping activity.

* Decreased CPU utilization caused by less jobs in
memory competing for service from the CPU's.

- For the range of memory values between the point of
intersection and enough memory to contain all jobs
(250K for the two class model), the Chen model includes
the effect of gradually having to swap in and out fewer
jobs in long-term wait as opposed to the classical
assumption that jobs in long-term wait are always
swapped in. Compared to the classical swapping model,
the Chen swapping model shows

* Decreased response time and swapping utilization
caused by decreased swapping of the jobs in a
long-term wait state.

* Increased CPU utilization caused by more jobs in
memory competing for service from the CPU's.

5.3.4 Chen's Swapping Model: Multi-class Versus Single-class

The following paragraphs compare the results of the two

class model to the average class and no batch class workload

5-19

Analytical Kodeing Results

models when using Chen's swapping model. The performance

measures considered will be the same as those used in

comparing Chen's swapping model versus the classical

swapping model: utilization of the CPU and the swapping

device, and the response time received by the interactive

users.

The figures 5-4 a) through 5-4 c) are plots of the data

contained in Table 5-3 for the two class, average class, and

no batch workload models. These plots reveal the wide

disparity between the results obtained from a single class

approximation when actually two classes of jobs exist. In

particular, one can note the following results

- The no batch workload model seriously underestimates
the response time of interactive jobs. For the average
workload model, the response time is overestimated for
main memory sizes which allow all active jobs to reside
in memory. For main memory sizes below this value,
response times are underestimated.

- The single-class workload models underestimate the CPU
and swapper utilizations. This is especially true for
the no batch workload model. As main memory sizes
increases, the average workload model approaches the
two class model.

- For all performance measures considered, the average
workload model was closer to the two class workload
model than the no batch workload model.

5-20

0

o .

o'o.(0
0

x
0

0

(D 4

o o

5os 0uLeuosl

a
S
a* a
~ S @

- S ~

Ii * 0o S 04:1 N

04.
0

04
0

S
o -

0 4 ~ Sa
~, U
Ii
0
N
* a

0 V

'4 5 0 I

S

w
S

'A

o 4 *o 4
4

S

S

I I
o 0 0 0 0
o N

(%) '1S;~w'?t1;n zwddwag

I

a 0

04'

*0

-00

%U

0 4 0 ~Go

M UOT*STTTft AU

Analytical Modeling Results

5.4 Chapter Summary

This chapter presented the results of modeling a

computer system using the Chen model extended to multi-class

models for three different workload cases: two class,

average class, and no batch. The hardware and workload

configuration parameters were chosen to as closely model the

Avionics Lab system configuration as possible and to remain

consistent with the workloads considered by Chen.

The results of the comparison between the Chen swapping

model and the classical swapping model are summarized below

- For small amounts of main memory

* Longer response time and higher swapping
utilization caused by increased swapping
activity.

* Lower CPU utilization caused by more jobs waiting
for swapping service and less jobs in memory
competing for CPU srvice.

- For larger amounts of main memory

* Shorter response time and lower swapping
utilization caused by decreased swapping of the
jobs in a long-term wait state.

* Higher CPU utilization caused by less jobs waiting
for swapping service and more jobs in memory
competing for CPU service.

The following results were obtained from the

comparisons of the two class workload model versus the

5-24

Analytical Modeling Results

single class workload models (average class and no batch

class)

- The no batch workload model seriously underestimates
the response time of interactive jobs for all memory
sizes, while the average workload model overestimates
response times for large main memory sizes and
underestimates response times fo" small main memory
sizes.

- The single-class workload models underestimate the CPU
and swapper utilizations.

- For all performance measures considered, the average
workload model was closer to the two class workload
model than the no batch workload model.

5-25

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

From the results obtained in Chapter 5 for the workload

described, the following conclusions can be made

1. Chen's swapping model is a more realistic model of a

computer system than the classical swapping model due

to the fact that Chen's model more accurately models

the effects of the scarcity of main memory on

job-swapping behavior.

2. Adding the batch class to Chen's swapping model

improves the accuracy of the performance measure

predictions when the system contains significant batch

activity.

6-1

iS

Conclusions and Reccuendations

6.2 Recommendations for Future Research

The following are topics of studies which could be

conducted as an extension of this thesis

1. The current model of the DECsystem-10 shown in Figure
5-1 is a highly abstract model that does not consider
many of the complexities of the TOPS-10 monitor or the
hardware configuration. As an extension to the model,
the following future thesis efforts could be conducted

- Modeling the CPU's in the DECsystem-10 as a
single processor-sharing node may oversimplify
the complex nature of the HPQ's, PQ1, and PQ2
processor queues. Including multiple queues with
job class priorities may provide a more accurate
model of the overall system behavior. These
multiple queues and job class priorities may be
implemented using the shortest elapsed time or
shortest remaining processing time queueing
disciplines (Ref 6:178-186).

- Modeling the I/O subsystem by just modeling the
disk drives may be overlooking long delays due to
contention for the I/O channel. An approximation
method described in reference 16 called the
method of surrogate delays appears to be a prime
candidate for inclusion to the present computer
program to more accurately model I/O channel
contention.

- An important extension to the present model would
be to determine how the numerous scheduling
parameters within the DECsystem-10 affect the
workload configuration parameters, service times,
and the probability transition matrices in the
model. This information would provide guidance
to systems analysts in setting optimum values for
the scheduling parameters.

2. Although the current model does provide reasonable
results, the model has not been validated. To
accomplish this validation, one of the following two
approaches could be taken

6-
' 6-2

Conclusions and Recommendations

- Take measurements on the actual system, and
compare the measurement results to the results
predicted by the model.

- If measurements on the actual system are
impossible, the development of an extremely
detailed simulation model which takes into
account most of the intricacies of the TOPS-10
monitor would be a step toward validation. This
would not completely validate the analytical
model since the simulation itself is not
validated, but the modeling accuracy possible
with a simulation should provide a more accurate,
but time consuming model.

3. The impact of changes in the workload configuration
using the current model would provide better insights
as to how the performance measurements are affected by
the workload configuration. Some of the most
interesting variations might be changes in the

- Job Size

- Number of batch jobs in the system

- Number of competing jobs in the system, i.e. not
in a long-term wait state

- Number of CPU versus I/O intensive jobs.

4. Another type of workload variation entails increasing
the number of job classes in the system. To model a
large number of job classes (greater than 4) in the
system will require a restructuring of the current
program. The program currently computes the necessary
probability distributions one node at a time, since
the state space for the whole network would be too
large to run on the CDC computer. With a larger
number of job classes, the state space of a node
becomes unmanageable. Therefore, the computations
will have to be broken down even further, in order to
fit in memory. If the program rewrite is undertaken,
one of the two alternatives listed below should be
chosen

- Rewrite the program in FORTRAN77 to take
advantage of the language's increased structure
and more importantly, to incorporate the random
record reads and writes that are now part of the

6-3

Conclusions and Recommendations

language. This will eliminate the installation
dependent implementation of random record
processing and make the program more portable.

Rewrite the program in PASCAL, PL/I or some other
language that allows recursion. Since the
computational algorithms are defined recursively,
this may provide more efficient code and will
definitely be a more straight forward
implementation.

6-4

Bibliography

1. Allen, A. 0. "Queueing Models of Computer Systems,"
Qmmataz (April 1980), pp. 13-24.

2. Baskett F., et. al. "Open, Closed, and Mixed Networks
of Queues with Different Classes of Customers,* a 22,
2 (April 1975), pp. 598-603.

3. Buzen, J. P. OComputational Algorithms for Closed
Queueing Networks with Exponential Servers," QgNo. "a
16, 9 (Sept. 1973), pp. 527-531.

4. Chandy, K. M. and Sauer C. H. 'Approximate Methods for
Analyzing Queueing Network Models of Computing Systems*
AC 9n=Ltj= AuixW 10, 3 (Sept 1978).

5. Chen, P. P. *Queueing Network Model of Interactive
Computing Systems," f of tM IfM 63, 6 (June
1975), pp. 954-957.

6. Coffman, E. G. and Denning, P. J. DMAUg BzA&Ma
Theory, New Jersey: Prentice-Hall, 1973.

7. Control Data Corporation. mUni ZztAd Version I
Refernce ganu a Revision G. Minneapolis, Minnesota:
Publication and Graphics Division, Jan. 1981.

8. Digital Equipment Corporation. TOPj-10 MonLtor
Inz.na la. Revision 6. Maynard, Massachusetts: Digital
Equipment Corporation Educational Services, Nov. 1980.

9. Ferrari, D. Cawg±tz £yam Bz Ziaiation. New
Jersey: Prentice-Hall, 1978.

10. Gordon, W. J. and Newell, G. P. mClosed Queueing Systems
with Exponential Servers,* Q~ratio Rearch 15, 2
(April 1967), pp. 254-265.

11. Graham, G. S. "Guest Editors Overview: Queueing Network
Models of Computer System Performance,O AM Cmouking

ncrveys 10, 3 (Sept 1978).

12. Hayes, J. P. zaut= <i g.tnz ad Organlzaton, New
York: McGraw-Hill Book Co., 1978.

13. I= Libkaxy Refeence lani. Vol. II. IMSL LIB-0008
June 1980.

14. Jackson, J. R. "Networks of Waiting Lines," rations
BAaaar.h 5 (1957), pp. 518-521.

6

Bibliography (Continued)

15. _Jobshop-like Queueing Systems,w
~getzt scina 10, 1 (Oct 1963), pp. 131-142.

16. Jacobson, P. A. and Lazowska, E. D. 'The Method of
Surrogate Delays: Simultaneous Resource Possession in
Analytical Models of Computer Systemsw mxrnm
Zyja1Wntj= Revig 10, 3 (1981), pp. 165-174.

17. Kleinrock, L. MU&US ByjLtAj. YgIUin a Tho _-, New
York: John Wiley & Sons, Inc., 1975.

18. Madnick, S. E. and Donovan, J. J. Qra tng Sytem. , New
York: McGraw-Hill Book Co., 1974.

19. McKenzie, L. E. aQueueing Network Model for Performance
Evaluation of the DECsystem-10,0 AFIT-GCS-EE-77-1, Air
Force Institute of Technology, 1977.

20. Moore, G. G. Network Mode JIn tax .ge-ale -±azahAXc
5yiLmg Ph.d. Dissertation. Ann Arbor, Michigan:
University of Michigan, 1971.

21. Muntz, R. R. wAnalytical Modeling of Interactive
Systems," fracgetnga jh I= 63, 6 (June 1975).

22. *Queueing Networks: A Critique of the State
of the Art and Directions for the Future,3 ACJ Campu
Snrcyn 10, 2 (Sept 1978), pp. 353-358.

23. Rose, C. A. "Measurement and Analysis for Computer
Performance Evaluation," Ph.d. Dissertation, George
Washington'University, 1975.

24. Saxton, H. E. "Validation of Closed Queueing Network
Models for the DECsystem-10," AFIT-GCS-EE-78-7, Master's
Thesis, Air Force Institute Technology, 1978.

25. Sanabria, P. "Design and Verification of Computer
Performance Measure Evaluation Analysis Techniques,"
Ph.d. Dissertationr; Texas A&M University, 1977.

26. Shannon, R. E. Syatma £aion2 the Art an Scince,
New Jersey: Prentice-Hall, Inc., 1975.

27. Sloan, M. E. MpUt= j aXnX OrManWzationgan
Introducti, Science Research Associates, Inc., 1976.

28. Smolsky, E., et. al. iN. ZrauM Logi Mial fox
iahnonjax. mai .fxap . Kalamazoo, Michigan: Western
Michigan University, 1977.

S

Bibliography (Continued)

29. Svobodova, L. CSMniatPnriftJ M n Mea.sreiment nd
M1etaho d s: And hUplication. Ph.d.

Dissertation, Stanford University, 1974.

30. Wong, J. W. Oneueing Network Models fr te
Systems. Ph.d. Dissertation UCLA-ENG-7579. Los Angeles,
California; UCLA, 1975.

B

Vita

Michael H. Cox was born in Aberdeen, Maryland on June

20, 1955. Following graduation from Junction City High

School in 1973, he attended the USAF Academy, where he

received a Bachelor of Science degree in Mathematics in

1977. Prior to this assignment to AFIT, he served as an

aircraft vulnerability analyst at the Air Force Flight

Dynamics Lab, Wright-Patterson AFB, OH.

Permanent Address:

3139 E. Sahara Avenue, #192
Las Vegas, NV 89104

S
I/

Appendix A

MULTI-CLASS CREN NODEL PROGRAM LISTING

PROGRAM PERFOR(lINPUT,OUTPU,TAPfIPUT, TAPEb ,OTPUT, TW3) PERORM 2
C PERFORM 3
C THE PROGRAM PERFOM IS A CLOSED QUIEUEING NETWORK PERIM 4
C MODEL IH CAN IE USED IN PERFORINCE EVALUATION OF PERFORM 5
C TIME-SHINO CEMPLI[SYSTEMO. THE PRORAM PERFORM IS PERFORM 6
C NED ON A CLOSED QELEING NETIE0RK MODEL DEVELOPED BY PEFORI 7
C F. DASKETK. CIWDY, R. ilT. AND F. PALACIOS. PERFII 8
C THEIR MODEL W.S PRESENTED IN THE ARTICLE IOPEN CLOSED, PERFORM 9
C 0 HI)ED NETWOK. OF OJEUES WITH DIFFEN CASSES OF PERFORM 10
C CtTOMERS', WHICH APPEARED [N THE JOURML OF THE ACM, PERFORMl 11
C VOL.. 22, NO). 2, PP. 248-260, APRIL, 1975. PERFORM 12
C PERFORM 13
C THE WOMHRATIONA. ALGORITIIS ii4ICH ARE USED TO PERFOI 14
C IREENT THE MODEL OF BASKET!, ET. AL. ARE BASED ON THE PERFORI Is
C COPIUTATIONMLLY EFFICIENT ALGORITHIIS PRESENTED IN THE PERFO!M 16
C DISSERATION OF J. iONG ENTITLED QUEIEING NETOK MODELS PERFORM 17
C FOR COWltTER SYTBS, UCLA-EIG-75I, UNIIERSITY OF PERFORM 18
C CALIFOIIA AT LOS ANGELES, OCTOBER, 1975. PERFORM 19

DIIENSIN E(13,2), EPVAL(13,2), DEPART(13,2), FNT(1000), COXHOD I
1IFACTOR(4I), [N OE3(40), [SKIP(2), ISTATEI(2), ISTATE2(2), COxIMO 2
20 (3ETYP13), WMOIN('0,2), NUSERS(2), PfROBi(13,13), COXHOD 3
3PR CM(o lO), PMiPR(O00I, PROBPAR(13,2,41), COXHOD0 4
4PRODTOT(13,4t1, SEVIC(13,2h. UTIL(13,21, tIREA(131, COXXOD 5
51(13), IDEP(13), IIP(13,2,40), TCPU(2), DIO(2), COXMOD 6
6iIK(13,2),SIZEJO(2) COXHOB 7

0ILE PRECISION IFACTOR COXIOD a
LOGICAL PRINTON COlO 9
tNTEGE tIERS, NN&MJ COVMOD 10
REAL DELTA, TOLERAN, PEXPVAL, SIZMEIE, AWJOBS COXIMO 11
NUMIOOE = 13 COXHOD 12

MA •SER 40 COXOD 13
MA El a MU R + I C1OXMOO 14
rAXT - 2 COXHOD 15
MAISTAT x 1000 CO1OD 16
ISIZE3 - 40 COXHOD 17

C INODE - TIE MAXIM MWi OF NODES WHICH CAN BE PERFORM 33
C REPRESTD IN THE PROAM. PERFORM 34
C PERFORM 35
C WMER - THE MAXIMIUM NIMER OF TOTAL USERS THAT CAN PERFORM 36
C BE REFRESENTED IN THE PROGR. PERFORM 37
C PERFOR 38
C PERFORM 39
C MAXI IER - THE rAXIMM tIIER OF TOTAL USERS THAT CAN PERFORM 40
C BE REPRESENTED IN TIE PROGRM + 1. PEFRM 41
C PERFORM 42
C MAXTWE - THE MAXI IJ NIUNER OF TYPES OF USES THT PERFORI 43
C AN BE ReRESE11TED IN THE PROGRAM. PNORM 44
C PERFORM 45
C NAPS"AT - THE NXIM STATE MUACE FOR EACH NODE. PERFORM 46
C PERIFORM 47

A-2

C ISIZE3 - THE MAXIMUM NLIBER OF RW RECORDS (30) PERFORM 48
C iVICH CAN BE WRITTEN ON TAPE3 + 1. [SIZE3 IS PERFORM 49
C CALCULATED BY AXNDOE. 3 + t. PERFORM 50
C PERFOM 51
C E(I,J) -- THE WEAN ARRIWL RATE OF TE J USERS AT PERFORM 52
C SERVICE CENTER I. THE DIMENSIONS OF E ARE PERFOI 53
C (MAIXNODE,AXTYPE). PERFORM 54
C PERFORM 55
C EXPVALI[,J) -- THE EXPECTED NUMBER OF TYPE J USERS PERFORM 56
C AT NODE I AT EQUILIBRIUM. THE DIMENSIONS PERFOM 57
C OF EXPYAL ARE (HAXMMDE, MAXTYPE). PERFORM 58
C PERFOM 59
C DEP (I,J) -- THE DBARTURE RATE OF TYPE J USERS FROM PERFM 60
C NODE I AT EOUILIBRIU.I THE DIMENSIONS PERFM 61
C OF DEPART ARE (MAINOIE, MAXTYPE). PERFOM 62
C PERFORM 63
C FNT0l) - THE FUNCTION REPRESENTING THE RE.ATIVE PERFIORI 64
C WEIGHTING OF STATE I IX THE CAOULATIONS OF PERFM 65
C THE EOUILIBRIUI STATE PROBABILITY DISTRIBUTIONS. PORM 66
C THE DIMENSION OF FNT IS (MAIXSTAT). PERFORM 67
C PERFORM 68
C IFACTOR(I) - VOLUE OF I FATORIAL. DIMENSION OF P]FONM 69
C IFICTOR IS (MAXUSERI). PERFORM 70
C PERFORM 71
C lIIEX3(I) - TIE LOCATION OF RECORD I ON THE RANDOM PERFORM 72
C FILE TWO. THE DIMENSION OF INEX3 IS PERFORM 73
C (ISIZE3). PERFORM 74
C PERFORM 75
C ISKIP - WORKING ARRAY USED TO SKIP DYER UNEEED PERFORM 76
C STATES IN TIESATE SPACE FOR A GIVER NODE. PERFORM 77
C THE DIMENSION OF 19KIP IS (MAXTYPE). PERFORM 78
C pRFOUm 79
C ISTATEI - WORKING AMAY USED TO SPECIFY A STATE OF A PERFORM 80
C GIYEN NODE. THE DM SION OF ISTATEI IS (MAIXTYPE). PERFORM 81
C PERFORM 82
C ISTATE2 - W0AIND ARAY UED TO ECIFY A STATE OF A PERFORM83
C OIVE NODE. THE DIMENSION OF ISTATE2 IS PERFORM 84
C (MAXTYPE). PERFORM 85
C PERFORM 86
C NOETYPI 1) - SPBMIFIES TIHE TYPE OF MOE I. THE PERFORM 87
C DIMENSION OF NODETYP IS (NAIIIDEI). PEmFOR 88
C PERFORM 89
C NORIM - WORKING ARMY USED TO CALCILATE THE NORML- PERFORM 90
C IZATION CONSTANT. THE DIMENSIONS OF NORMCON PERFORM 91
C NE (MAISTAT,2). PERFI RM 92
C PERFORM 93
C NJSERS(I) - NIU ER OF TYPE I USES REPRENTED IN THE PERFI RM 94
C OIIEL. THE DIIENS[ON OF MISERS IS (rIAXTYPE). PERFORM 95
C PERFORM 96
C PROB(IJ) - THE PROBBILITY THAT A TASK OF A OIVEN TYPE PERFM 97
C VILL PROM TO NOIE 1 *0 IT DEPARTS PERFORM 98
C NODE J. THE DIMENSIONS OF PROA PERFORM 99
C (MAINNIRE, MOMIE. PEORN1100

A-3

C PERFOR11OI
C PROJH(I) - THE PROBABILITY THAT A SJ!NETOR OF COIHOD 18
C MODES IN THE ETWORKOD IS IN A GIVEN COMOD 19
C STATE. THE STATES IN THE STATE SPACE ARE COXHOD 21)
C IIEXED BY TIE SUBSCRIPT I. THE DIMENION COXHOD 21
C OF PROBCUM IS (MAISTAT). COXMO0 22
C PROINAR() -- THE PROBABILITY THAT A SINGLE NODE IN PERFOIIIc
C THE NETWORK MODEL IS IN A GIVEN STATE. PERFORII109
C THE STATES IN THE STATE SPACE ARE INDEXED PERFORM110
C BY THE SUBSRIPT I. THE DIMENSION OF PERFORIII
C PROOIMR IS (MAXSTAT). PEIFORIMlI2
C PERFORMI13
C PROE9(I,JK) -- THE PROBABILITY THAT THERE ARE K PERFORIM114
C USERS OF TYPE J AT NODE. THE PERFORNLL5
C DIMENSIONS OF PRMOPAR ARE ('AKINODE, PEWORI16
C MAITYPE,MXUSEI). PERFORM117
C PERFOMI 18
C PROTOT(Q,J - THE PROBABILITY THAT THERE AE J USERS PERFOIM119
C AT NODE I. THE DIMENSIONS OF PROBTOT PERFORM120
C ARE (NA)IODE,AXTYPE). PERFORI121
C PERFOB122
C HERVICE(I,J) - THE SERVICE TIME OF A TYPE J UER AT PERFOI'123
C NODE 1. THE DIMENSIONS OF SERVICE PERFORII24
C ARE (MAXNODE,pIqKT'E). PERFOR125
C PERFORMI26
C UTIL(,J) - THE UTILIZATION OF NODE I BY USERS OF TYPE PERFOIlI27
C J. THE DIMENSIONS OF UTIL ARE (MAXNOIEi PERFORIIL28
C IMXTYPE). PERFORMI29
C PERFOR130
C lWA -- WORKING ARRAY USED TO CALCULATE THE MEAN ARRIVAL PERFORML31
C RITE OF iSERS AT THE NODES IN THE INEfORK. PERFOI132
C TIE DIMENSION OF NAREA IS (MXNODE). PERFOII133
C PElFOIRI134
C K - WORKING ARRAY USED TO CALCULATE THE MEAN ARRIVAL PERFOI135
C RATE OF USERS AT THE NODES IN THE NETWO. PERFOR1136
C DIMENSION OF X IS (MAXNOOE). PERFOR1I37
C PERFORM138
C IEP(I) - INDICATES STATE DEPENIENT SERVICE PERFORII39
C RATES AT NOE I. PERFORMI40
C I - NO STATE DEPENDENT SERVICE RATES PERFORI14I
C 2 -- SERVICE RATES DP9DT ON THE TOTAL PERORWII42
C INUE OF USERS AT THE NODE. PERFOi1I43
C 3 - SERVICE RATES DEPENDENT ON THE NUMIER PERFORM144
C OF USERS OF A TYPE AT THE NODE. PEWORMI145
C "IHE DIMESION OF IDEP IS (IIAXNOOE). PERF OR146
C PE R1 147
C DEP(I,JK) - IHE RELATIVE SERVICE RATE OF TYPE J USERS PERFORIM4S
C AT NODE I WHEN THERE ARE K USERS PRESENT PERFORU149
C AT NODE I. THE DIMENSIONS OF DEP ARE PERFORMi5O
C (MAINODEINAXTYPE,AXLSER). PERF15I

NRITE(6, 1) PERFORM152

I FORMAT(IH,9,"THIS IS A CLOSED SJBJEINO NETWORK MODEL PERFOR153
1 FOR TIlE-SHRIG COIPUTER SYSTEMS.') PERFOII154

A-4

C PERFOM155
C CPEN THE MMI~ STOWM FILE PERFOAIII56

C PERFORMfl57
CA.L OPEIIIS13, 113EN3, ISIZE3.O) PERFORM1l58

C PERFOftII59
C CALL INPUjT TO INPUT THE DATA ffECESSMYV TO EIEOJTE TIE PERFOARiI60
c PROGRAM PERFOM161

CALL IHDA1A(PtR)BSERVIEcE,NOETYP,WSRS 1IAXNODE PERFOfRM163
1PAXUSER,MAXTYPE,rXSTAT,NODE, USERS1 ITYES XIIF.13, ISIZE3, COMBO 23
3dAA, ISTATESI IDEP, DEP1 EXPVALNDISKS, NAXITER,TOLERfl4 COXHOD 24
30S9, TCPU 1 I tZEJO8,A'AO8S1 ?AVGJODI ,RETIBNS(IO 10 OXNOD 25

PRINTON - .TRJE. CDXMBB 26
FB Aa0.0 COXMOD 27

M1TER a 0 COINOD 28
DO 4 JI1 ITYRE-S CoxoD 219
IN0 4 E:l,NODES CIIXMOD 30
7 W (J E. 1) Es) TO 2 COXtIOD 31
EWVAI,J) %IUSERS/HODES; COXMOB 32
00 TO 4 COKIIOO 33

2 EXPYAL(LJ) =0.0 COKMOD 34
4 CONTItJE COXIIO0 35
C COKIIOD 36
C CAL 0E4?5T OMP~UTE PROBABELET TRWII ON MATRIX PRDB COXHOD 37
C COXHOD 38
5 CM.L CF)U5(PRO 1 NOII(SIDISPRl,TCPU1DI0,tWjGOB, COINOO 39

IEXPYAL,SERYICE,EELTA, EEXPYAL, IUSERSMAXOL NMAXTIWE, COXWOD 40
2ITYPES,NMIES, NITER, E1 , WEA) CDXIWD 41

C COXtiOD 42
C CMi. FIJIV TO CIALCiLATE THE F1JlCT[0tI3 FNT FIR ALL NODES. PERFOW167
c PERFORrII68

CALL FIIT(E, SERVIE, IFACTOR, ESTATEiFNT, NUSES.NODErf P, PERfGIM169
iNOBE, USEn~rSII S,nqKNODE,W4XUSE,r tI~X l,MTYPE, PERFORM170
23XSTATI EEX31 !SIZE31 lSTATES, IDER1 EP) ,DETINSI 10) PERFORM171

C PERFORII172
C CALL NOML TO CAWtLATE THE NORALIZAION CONSTANT. PEWMM1I73
C PEORM174

CALL NMqLM(RT,I OW,S,ISTATEI, ISTATE2,ISKIP, PERFOR11175
IMAWNOIE, WXSTAT, NWES, ITYPESMAXTYPE, tNE)X3. 1IIE3, ISTATES) PERFORII176

C PERFOR 177
C CALL PIINGN TO CALCI.LTE Wl4 WSINAL PROBABILITY PERFOA?1178
C DISTRIBUTION FOR TIE STATE OF TIE NODES. PERFORM179
C PERFORIUBO

CALL IIRGEN(FNTN%"cG,PRO0MlAR, PROUCI, WSERS, ISTATEI1 ISTATE21 PERFOR118l
li SIP, 91MIE, NASTAT, 1AXTYPENOS, ITYPS, INIEX3 1511E31 ISTATES) PERFIWII,32

C PERFORMI83
C CALL EXPECT TO CALULATE V/ARIOUS PERCRMACE M'EASURES. PERFOR!1184
C PERFRM135

CALL EPECT(PFQBHRR,PF#)lT0T, PROPAMJNSERS, ISTATEI, PEFbORM186
1NOIMflPEKPYAL DEMT 1UTILISERYICE,ENANODEI PERFORM1S7
2MXUSEImXTYPE,Nw3ES, TYPEtSERSI ASAT, IIIEX3, ISIZE3,ISTATES1 PERF18
3MEP, DW I'AIWSER, ERINIMR, NITER) CONNOD0 43
DD071L' 1, NODES COXIIOD 44

A-5

00 7 H z 2, ITYPES COXHoo 45
EAPYrAL 7I) = EXPVAL,i) 4 EKPVAL(L,9I) COXHtOD 46

7 CONTIUE CDXNOD 47
WELA a AilS(PEXPVM-EXPVALtNU1SVSS+3, [)I COXN0D 48

PEXPIA - EXAN(DI(S-+3,1) COINGO 49
NITER a NITER +, I COXHOD 50
FRINTON - .FALSE. COKIU3D 51
I.RITE(6,1210) DELTA COXHOD 52

1210 FO~hATIlu1/0X,'bELTA = ",FI0.5) COMtIO53
IF f((MTER .LT. HAXITER) AND). IDETA .07. TO90)) GO TO 5 COXINOS 54
PRINTON a.TRUE. mOXNO55
CALL EWECT(PROIARPROTTPROBPRdIJSERS, ISTA1EI3 COXHOD 56

INOOETYP,EXMk.L DOW, dJTIL,SERVCE, E, NAXNOE COXtIOD 57
2HAXUSE1 1NAXTYPEMNi83 [TYPES, lOSERS,HA'XSTAT, ItIIEX3, ISIZE3, ISTATES, COXHO 58
31DEP, DIP, HXUSER, RINTN,NffER) COXXOD 59

go TO 20 CUM11060
10 IWITE16, 15) PERORtM191
15 FOftT(111.0K EF4RORS HAK~ OCCURRED IN THE INPUT DESCRIPTION.', PBW'192

1//2L"OGEO(YOUR IPT DATA FOR C0NCTESS.0) PERFWII93
20 CONTINUE PERFOI94
C PEF A195
C CLOSE THE ?149S STORAGE FILL. P8wIIM96
C PEFO197

CAL C.OSN(3J PEWOh 1,

END PERFORM20
SJDRNJTNE IIEIATA(PRDDB SERVICE,ENOETW1PIJSERSNAKNOOE, INIATA 2

1NAXUSER,WAX'IP,IAXSTR1,NO0 JES, U , TYPES, ,iltIEX3, ISIZE3, INDATA 3
2WA, ISTOTE P,EPEXPY4 ISKSAXIERTIRA COXIO 61
3DISMffIC,01D,SI7EJ3OAVJx8S 7W$JJ3I,RETIt(EO) COXH 62

DIMESION PR3l(AN1ODEvHXNODE), BERICE(MXINOCE,M4XTYPE), IATA 5
1E(HAXNOOE, IAXTYPE), NOIJETYP(rAXNOV), IaiSERS(HAXTYPE) 1 INDATA 6
2X(RAM~?~J), iMREAIMXNODE), IlffX3ISIZE3) 1 TPNANI INDRTA 7
3DEPQMAOI,fATiYPE, NAXUSER), EXPYRLlNAXNW),NXTYPE), COXHOD 63
4OlSKcPRB(H4AIN0,NAXTYP),1TPU(AX1E),Dl0(lAXTYPE), 0011100 64
SSIZEJO(AXTVPEI COIXHOD 65

C INDATA 9
C SUBMJINE NUIT READS THE DATA NECESSAft TO RUN TIE [IATA 10
C PROMMW. TIE O4AACTERISTICS; OF TIE TIME-MIND CORITER INATA 11
C SYSTEM KEING MODELED AR INPUT IN THIS WTINE. INDATA 12
C INIATA 13

I9RITE(b. 1) INIATA 14
1 FORJATI ////101, *.**.IE IPU TO TIE FIDDEL FOLLOIS*m) INATA 15
C IMIATA 16
C READ THE MWfIE OF NODES IN TIE NETIIM AND THE NUMIE IMIATA 17
C OF TYPES OF TASK$. 1NDTA 18
C INIATA 19

READ(5, *1 NODES, ITYES 0011109 66
IF (80F(5)) 1000,15 INDATA 22

15 CONTINU.E INDATA 23
IF ((NUDES.07T. IAVDE) .OR. (ITYPES GT7. NAXTYPE)) 00 TO 1100 INDTA 24
WRITE16,20) NODES, ITYPES [IATA 25

20 FOWAT(//10X,rlE uKW OF NOUES EPREENTED IN TIE MOEL uINDATA 26

A-6

113//lOX,wf MAOE OilE F TASK TYPES IEPRESENTED IN THE I NMATA 27
2'MDOEL it"13) INDATA 28

READ(5,#) NISK9S,SIZEMENMAX~ITER 1 TOLERAN WXMOD 67
WITE(b 126) ISCS, SIZEMEM COXO) 68

26 F(NMTWI/ WTIE MISHER CF: DISKS REPRESENTED IN 7WE MODEL. COXHOD 69
1131110K1 T1E SIZE OF IENCRI N K BYTES = 'FI0.5) COXHO 70
IF (EOF(5) E. 1) IX0 TO 1(1)0 CODIOD 71
WRITE(6,27) MAITER, TELERAN COXIIOD 72

27 FORPT(I/101,fl(E MIMi MUMS OF ITERATION z ,13//1()X, COXIO 73
1flHE TDLERME F(ER COV061O~fN a 0410.5) COXHOI) 74
IF (EOF(5) .EQ. 1) Gri TO 100 comaeD 75
DO) 29 1=a1, NDISKS COXHOD 76
TEMX5,*) (DISKPR(,J),Jm1,ITYPES) COXMOD 77
IF (BO(5) .EG. 1) 60 TO 1000 COXHO7B

29 CONTIMLE COXHOD 79
IRITE(6,30) coxNOw s

30 FORHAT/10X'DISK On, 15X1019g(ACESS PROBABILITIES COXHO 81
mvB TAM TYPE,) COXHOB 82

DD 32 1=-1, NISKS COM 083
WRITE16,31) I, IOISIPRD(IJ),J=1,ITYPES) COXHOO 84

31 FAT(/101, 14, lOX, 10(FIO.5)) COXHOD 85
32 CONTMNE COXHOD 86

REAlX5,e) (IIJSERS(J),TCi 3I(J),I(J),SIZEJ(S(J), Jz1,ITYPES) COXHO 87
[USERS x 0 INIATA 33
[STATES = 1 INMTA 34

35 FORI(lI/lOX, 'TiE DISTRIUTIWI OF TASKS IN THE SYSTEM co, Be110
1'BY TASK TYPE "J17X1 'TASK TYPE"918IUMER OF TASKS,BX, 03110 89
2"CPU TINI'[NTECTION,81, 'DISK I0'S/INTERACTIOIW,BX, COXHOB 90
3"JOD SIZE IN K WTIESI/) coXHO 91
DO 41 1=z1, ITWPES COXOD 92
URITE(6,40) 1, NJSERS(1i, lTWI(, DIO([), SIZEJOB(1) COXNOD 93

40 FOWT(/20,3,2X,313X,FIO.5,22OLFIO.5)) CDXIII) 94
TUISERS =um IUE S ES1 INATA 41
ISTATES E STATES # (MJM(I) +1) INDATA 42

41 CONTINLE (01110 95
WIrETE(6, 42) [USERS COXII) 96

42 FOftTf//17X, rOTIA' 1 lX1I3) CDXIII) 97
AXJOS z 0.0 COXMOD 98
0O 43 1=x1, [TYPE COXHOD 99
~WIJOBS a FNGO9 + SIZEJOBU) * WElERSIX) CoX"Oll 100

43 CONTV WE COXMOD 101
AM0 a N&$UI I [USERS COXHO 102
NAJOB = SIZE f AVSMOI COXIII) 103

WRITE(6,44) WBJ(19NAVGJO CDXIII 104
44 FOWVIT(/H1X 1AV5NA JOB SIZE a w,FIO.5,/101, COXHO 105

VN'AWG USER (F JOBS IN PEHOY = *,13) CDXIII) 106
IF((IUSR GBT. MAWXI1E) .OR. ([STATES .GT. NAISTAT)) GO TO 1200 INDATA 46

C [t4ATA 47
C WEAD THE NODE OWMTERSTICS. INDATA 48
C IIEIATA 49

IITE~b.48) [TYPES INIATA 50
48 FORA(/(/10K,NOE IACTERISTICS//iOX, 'NOW', 51,NODE', 5X9 INIATA 51

A-7

1'SEVYICE'/101 1'IWE1 ,,TPE,7X'RATE,6X,IE SERVICE RATES , INDATA 52
21OR TASX TYPE 1 THRUM',13) INDATA 53
D)~ 65 1 =1, NDS INMATA 54
READ(5,m) NODETYP(I)I IDEP(1), (SERVICE(I,J),J1,ITPES) COXIIOO 107
IF(B)F(5)) 1000,55 INDATA 57

55 C2ONTINUE INDATA 58
IF (IDEP11) .EQ 2) REA(5,e) (DEP(1 31,J),Jl~rXUSER) £011131 108
IF (IDEP(I) .tE. 3) 60 TO 59 INATA 61
DO 58 J = 1, ITYPES INDTA 62
READ<5,*) CIEPlI,JX,K;1,HWO R) CoXH 109

58 CONTINUE INDATA 64
59 CONINUME INDATA 65

WRITE(6,60) 1, NOOETYPfI), WIE(I), ISERVICE(,J),J-I3 ITYPES) ITIIATA 66
60 FOIAT(1011 14,5X,14,8X,14,6XBF1O.5,10(/41XEF10.5)) INDATA 67
65 CONCTINUE INDATA 68

RETURN INDATA 122
1000 WITE(6, 1005) [IIMTA 123
1005 FORMAT((/101, "MUEXPECTED END OF INPUJT"') INDSTA 124

PER34ERWJ~IMIATA 125
1100 WRITE(6,1105) IIAXNOOE, rA119fPE, NODES. ITYPES INIATA 126
1105 FORNAT((//0X7 "WtX1NUM NODES = ",3"AIU TASK TYPES a 1,13//, IMIATA 127

I"YOUR IieirTS ARE 6,13," AND ',13,0 RESPECTIVELY.') INIATA 128
OEMi ERROR INDATA 129

1200 IIITE~b, 205) NAXUSER, MAXSrAT, IUSERS1 ISTATES INDATA 130
1205 FORMiT(//10X,mM1111.11MNDE OF TASKS z ",13,/1OX, CoOllO 110

I~r1IUM NMIER OF STATES = ",15,/10X, Co III11
2"YOR VMUS ARE 0,13,8 ADI 015,1 RESPECTMLY.2) COXIIOD 112

REI URN EROR INIATA 133
END INIATA 134
92JROUTINE FLEIT(E,SERVICEIFATOR 1 ISTATE,FNT,MJSERS,NCDETYP, FIJICT 2

INODES, OJS, ITYPESKNAXWOIE.MAXUSER,IMXUSEI, RENT 3
2WIXTVPEMXSTAT, INIEX3, ISIZE3, ISTATES, IDEP,IeP),dETIBSEOR) RENT 4

DIMENSION E(tMA1IE,NAXTYPE), SMWCE(MAXNOOE.MXTWE). FUNCT 5
11FACTIOR(MAIUSE1), ISTA1'E(MAXTYFE). FNT(MAXSTAT). FIIICT 6

mJSRSmXYP),NOOETYP(MAINEE). INDEX3(ISIZE3), FUNCT 7
3YJEP(MAXNOTE), DEP(MAXNODE MAYIM, AXUSER) FUNCT 8

DUBLE PRECISION IFACTOR FUNCT 9
C FUNCT 10
C THIS S3ROftINE CALCIalES TIE VALUES FOR TIE FUNCTIONS RENT 11
C WHIICH MRE USED TO CALCILAlE THE PROBABILITY THAT TIE COMP UTER FUNCT 12
C SYSTEM BE3IN MODLSD IS IN A GIVEN STATE AT EQUILIBRIUM. FUNCT 13
C RENT 14

IFACTORCI) a I FINCT 15
Do 10 1 a 1, rAUSE FUNT 16
IFACTOR(I+1) m IFACTORCI) NI FUNCT 17

10 CONTINUE FUICT 18
DO 601=1., NODES RENT 19
[hW =1 FUNCT 20
DO 20 J .1, ITYPES RENT 21
ISTAIE(J) *0 RENT 22

20 CONTIMUE FlICT 23
25 CONTINE RENT 24

mis.R * UC25

A-8

00 30 J: 1, ITWS FLCT 26
MAOE a WIIER ISTATE(J PLCT 27

30 CW~INI&RK FC 28
J a2 FLUCT 29

35 O8 M IRiT 30
FWLUl - . PICT 31

PA4M - 1. PICT 32
00 38K = It ITYFES RW C33
L IlSTATEIK) FRM 34
FWVE1 s FVALU~l * ((E(1,K) ISERV111(LK))**L) FIUC 35
FIIIF x FIWJJE # IFACTOR(L41 FUIC36

38 MXIKE FCT 37
[F (NM1YPI I .EQ. 3) FMAL1E2 x 1. / PAW~E FLWIT 38
IF (NMM3DI A- 3) FYRLLE2 = IFACTRI)VIUE) /FYIE2 FUWT 39
RdNT([INEX) = FYACJEI * FVI.E2 MYlE 40
IF (HTERDI AE. 2)60 MO 41 FUNCT 41
NM I a OM -I FMlE 42
IF (NM .EQ. 0)00 TO 41 FIlET 43
FVF a 1. FUICT 44
DO 40 X=a1, O.M FlET 45
FFF aFVF * D(,1,K) FlET 46

40 CONTINIE RUNCT 47
FNT(INDEX) = FHflIM) / FFF FI 48

41 CONTINE RKlT 49
[IF HEMI D.AE. 3) ODTO44 FRlT 50
FFF 1.~ FRWT 51
00 43 K - 1, ZIWES FIIC52
IF (ISTATE(1 .ED. 0) OD TO 43 FilE 53
NMMa ISTATEWK RM C54
00 42 (-=1, MMn FWlE 55
FFF 2 = * CEP(t,KWJ) FUlET 56

42 DIXTNE RIC 57
43 CONIE FCT 58

FNT(INII) a FNTIVSE) I FFF RWlT 59
44 WI3NI4E ICT 60

[tNlEX = INT + I FRlE 61
MM - MAD Ii FRl 62
ISTAJEII - ISTAlEI) +' I FlET 63
IF (ISTATECI) LE. MJSERSI) O D TO 35 FIET 64

45 LONU s FC 65
ISTATEMJ - IS7ATEIJ) + 1 FAME 66
IF (MTEOJ .OT. NiSERSUJ) 00 70 55 PRlCT 67
K aJ- I FIlET 68
00 50 L - 14K RIlT 69
ISTAlEWL a 0 FEC 70

so WM F~LOT 71
00 TO 2 FIT 72

15 emu"IJ FICT 73
*aJi+ I FIlET 74

IF (J .L ITYME) O0 TO 45 FRlET 75
c FtoET 76
C THE FUIETOM.. WYlE CM.OATD FORAL Mi.PSIME STATES FUICT 77
C OF FNHH AtSO 07TTH MREETM UE 78

A-9

C MIE NOLIATWN COMMAN. RICT 79

60 CONTINIE FUWIT82
IETUR FlIICT83
ED R T 94

FUT85
SAROUTINE NWW.FNT,NORIMcNJSR, ISTATEi, NORM. 2

1ESTAIE29 lgKIP,MNIIE,MXSTAT,NOIES ITYWES, NORM 3
2MAXTYPE, 111EX3. ISIZE31 ISTATES) NOM 4

DIMENSION FNT(HRISTAT) , 10MNRW.STAT,), N~hW. 5
IIWSER(MKTYPE), ISTATEIMXTYE) 1 ISTATE2(ATYPE), NOR. 6
2ISIPWTWE)vINEMI(SIZE3) NN3W 7

INTEME FIMER NORWM 8
RFA -WMNO

c NOM. to
C THIS SUO~RTlE CMDUTES lHE NCWAIZATION CONSTNT NOEW 11
C FOR THE MODEL. THE MOLW.ZATION CONSTANT ASSUES THAT TIE NOOK. 12
C PRtOBAhILITY OF TIE SYSTEN BEING IN ALL STARES SUNS TO UNITY. NOWI 13
C NORAVL 14

COLL RE0IS(3,OWRC0(vl),[STATESt) NOR. 15
CALL IRITNS(3,NWIIN(1, I), ISTATES,NXNOCE4') NOR. 16
NI I 1NORIW 17
NMN a=2 NORIW to
DO 110 1 a2, NODES NCW. 19
CALL FSWS(3FNT(),ISTATES, I) NORK 20
NoE a I NOR. 21
Do 15 J mJ1, ITPESN41L2
ISTATEI(JM a 0 NOMW.23

15 CONTINUE MAW 24
20 CONTINUE NORM 25

K x2 jgOtjX 26
00 25 J : 1. ITYPE NORMW 27
ISTATEM() =0 NOMW.28

25 CONTINUE NORM 29
10(z I NW 30
FIWIEX a I NEMW 31
11151X - INDEX NW
ITEMP s 1 NMIW 33
DO 30 J alI ITYPES NOUW.34
ISKIP(J) z [TEMP (I1.EM(J) - ISTATEI(IJ) NEW. 35
HTEMP ITEW4 (MIIiESJ) + 1) NORM 36

30 OIXMI NORNAL37
[SKIPM1 = ISOM(1 + I 11MW. 3
FYIJE -Q 0.Eam 39

40 MKJNIE NORA 40
FYALUE a FVALUE + NOMO(FINENAMI) * FNT(LIDEX) NOIUW. 41
IF (FINDEX . INDEX) 00 TO 70 1191W. 42
ISTATE2(Kr~I a [STRIE2UO + I NWM 43
IF (ISTATM(KK) AST. ISTATEIMK) 00D TO 50 NORMA 44
FINDEX - FID + 1 M4 45
LINO1z LDIEK - I NRL46
00 TO 40 OEw 47

A- 10

50 CONINU MOML48
FINDEX a FINDE+ ISKIP(KK) NOW 49
UNDOE a LINDEX - ISKINtKX) NORK 50
11 xKK+ I NORiMI 51
ISTATE2(100 c ISTATE2KX + I KM W52
IF (ISTATE2(KK) .OT. ISTATE1(N)) 00 TO 50 NORIA 53
La 0(- I NORMW.54
DO 60 J a1, L NOEW.5
ISTATE2() a 0 NW 5

60 CON1TIRE NOEW. 57
KK a I MORK.so
GO TO~ 40 ORL59

70 CONTINUE WINK i60
NMMCNIEX,NMi) a FYALLE NORMU 61
INSE * INDE + I NEW. 62
ISTATEIMI a ISTA1EN(1 + I NORWL63
IF (ISTATEM() -LE. NMS))0TO 2D NO . 64

B0 ONETIME NOW 65
ISTATEMI) a ISTAIEM() +I NEW 66
IF (ISrAIEL(K) .OT. MJSERSK)) 00 T0 100 MEW 67
La K -I NORM 68
00 90 Jo 1, L NOEW. 69
ISTATE1 (J) z 0 MEW.X 70

90 CONTIEJE MEW. 71
GO TO 2 NORW. 72

100 CONTIM4E MW 73
K zK+1I NORtA 74
IF (K .E. ITYPES) 010O80 NOIW 75
CALL IIRITIIB(3,NO"tICO(,NGRH) 1ISTATES1ItAXNUE+[) NORI. 76
[TEMP x NMRI MRK 77
NMIi - MWlI MRW 78
NOEI2 a ITN MEW 79

110 COfl'IME MEWX 0
FETUR NW 81

END NORM.82
SWRWMINE MffiINIFNT,CONW0,PR9IIM,PROMII MRIN 2

INUSERS, ISTATEI, ISTA1E2, ISKIP,tAD4CEIrAISTAT, 61ON 3
2rX.WNWLMSITWESIIIEX3,ISUE3IISATES) MIN 4
DIIENSIN RIT(WASTAT). VUUEIOMXSTAT. 2), NORIN 5

IPRMV IYWS AT), PROKMMMASTAT), MtARGIN 6
2NUEMAXTYPl). ISTAMMAIMTYPE). ISTAIE2(MA1TYPE), HMIN 7
31SKIPUWCXTYE), [IMM3ISIZE3) W IN 8

BUME FINE GNIN 9
C 61ON 10
C THIS SUBROUITINE MATES THE PROBABLITY THAT A 6MM NmIN It
C NME [S IN A GIM4 STATE. THIS PRUOILITY IS CALMIATED NMRIN 12
C FOR ALL POSSIBLE STUB~ FOR EACH NODE. WMIN 13
C IUOIN 14

NMl IWRIN 15
N 2 BMIN 16

CILL SM(3,WISIE(I1NOrnI ISTATESMDIO4NMESI MIN 17
MNBTAN - 1. / OISUMU(STATES 1MORM1) GAIN 18
FINDE t NMIh 19

LIIIE a ISTATES NWIN 20
F a 0. AMN 21

CA.L REAMSI3,FT(1), ISTAIESNOEIS) WRON 22
CALL RESiN(3,C0NIII ,HNq), [STATES, ISDUEDES-1) ?UOIN 23

20 CONT1IE WINi 24
IROMMFINWE) m CUM WN I(LIXNCft) # MAGW 25

IFNT(FINE) MIN 26
PROGOIIFINOE) a 03WAN~ # CfNIR(FIENN) * IUGIN 27

1RFNTLNEX) "WIN 28
PP FPP * PRWI(FIN10) MVGIN 29
FINDEX - FINDEX + I NIN 30
LIME - LDWIE - I Y1H 31
IF (FINIBLE. STATES)GO0TO 20 MI~ N 32
IF (NOEJS .LE. 2)00 TO 150 MN 3
NCYlES - NCIES - 2 WAGIN 34
CALL I3[1l(3, PROMRI) [STATESNANCD*24$OIS))MA31N 35
DO 140 1=I NC, YCLES WAIJN 36
N"51 - NES - I MfIN 37
CALL RMEflS(3,NT(1)STATESMNAl) MIWON 38
[IEP - NMII MIN 39
NMI a NCMH ImIN 40
NMUI - ITBP MIN 41
CLi. REA)NSf3.cOIR(J, NM~w), [STATES, IMXKNGO4N.J-) 01ON 42
INDEX a I WG. 43
DO 30 ,J a 1,ITYPES MOIN 44
ISTATE1 (J) x 0 MOIN 45

3D CMU71ME HAIN 46
K 2 MARGI 47

ap 0. WMIN 46
40 CONTME DWGIN 4

00 50 J - 1, [TYPES NMG!N 50
ISTATE2I) a ISTATEIMJ MRIN 51

50 O]NTIE IUGIN 52
FIMa I RMIN 53

tIMX a INDEX IUBIN 54
KKa 1 ""IN 55
17EM .1 MIN 56
DO 60 1 .1, ITYPES MIN 57
I9l([P(J) aITEMP ISTATEWf) YMIN %8
[[El a [[ElF (IWSERSIJ +) MIN 59

40 CUlNTIIE MIN 60
[IP(11 a ISKI(1 + 1 MIIN 61
FYOLJEL a0. MIN11 62
F'VJE - 0. WAIN1 63

70 CONTINE W301% 64
FVIUE a FWLIE 4 PftUCIMUNIE10 . 13011 65
M(COPSW(FIMJNONM * FN1(IWEK) / ARIN 66

2COn RILUMEN]MI)) HMRIN 67
FVIJE - FWM #. PN39CU(LIIEX) *MARGIN 48

11WEDMI BEXN~hI2 * FNT(FIIIEX)) MM1011 69
2COIUCM(LIMIENM)) NABOIN 70
IFi LINO .ER. WSATES) DO TO 100 MRIN 11
ISTAME(KK) *ISTKM2(KK) + I MIN 72

A- 12

IF I ISTAME(K) .GT. 1IJMR(KK) 00G TO 80 NAMGIN 73
FIEX = FINIEX +* I M~IN 74
LIEX x LINTMl +. 1 HGIN 75
00 TO70 NAMIN 76

80 CENTIRE IMRIN 77
FINEX - FINIEX + IM(P1WO MOIN 78
LUNEX - LIMBE + ISKIP(KK) MRIN 79
KK -K0K+ I HA1N 90
ISTATE2(W a lSTATE2(W1) + I MIN 81
IF (ISTRTE2WKK) OGT. KWSES(KK) 00G TO 80 NMIN 82
L zKK - I HAMOIN 83
00 90 J a=11 L WIN 84
ISTATEM() aISTATEI(J GRIN 65

90 CONTIKOE WRGIN 86
KK0 1 x IH IN 87
OD TO 70 MRIN 8

100 CONITINUJE "PGIN 89
PRGIIM(?EIE) a PLI1 MARGIN 90
PP PPP + FWALLEI WINi 91

P COWNEX) = FVALLE2 MEGIN 92
INDEX = INDEX +. I MRIN 93
ISTATELMI = ISTATEIMI I MGIN 94
IF (ISTAlEI I.E. IMSERS(D) GO TO 40 MVIIN 95

110 CONTINUE MIN %
ISTATEMC) a ISTATEI(K + I "MIN 97
IF I STAME(K) AGT, MJSERIK)) 0O TO 130 NAMGIN 99

DO 120 J a 1, L GAIN to0
[STATE!!,) a 0 HEGIN 101

120 CUISE WGIN 102
K a2 WIN .103
00T040 WMIN 104

130 CONTINIE W~RIN 105
K aK4. + IIN 106
IF (K I.E. IWYES) O0 TO 110 MAGIN 107
CLL IThB(3, PERhI(1), ESTATES, PXNGVE*2+NSI) MGIN 108

140 CONTMIE ""IN 109
150 CONTIFIE WIN 110

PPP - 0. HMIIN 111
DO 160 1 a1, [STAlS NWIN 112
PPP - PPP +. PFMNJ(I NAIN 113

160 COITIMtE MARGIN 114
CALL WRITNS3,PRKU(1),ISTAIES,rXNOII*21) HARIN 115

RE MRON 116
END HAMBN 117
SIROUIIE EXPE(PRDOIW,PRGSOT0,PRW9M,NISERS, ISTATE, EXPECT 2

INMErW,EXPALUEMTUTTL, 9ERYICE,Ei EXPECT 3
2hMEMJR9E,XTYE,NMITWES,IUER,mAXSTAT, IIIJE3, EXPECT 4
31S11E3, ISTATES,IE, REP, IME, PRINTON, MITE) COMMG 113

DIMISION PFIUU(MSTAT)P09T0T(NXNI3E~IAXUiSE), EXPECT1 6
iPla (INDBIENAXTPEINAMSE), NUSES(MXITYE). EXPECT 7
2151AMEM1fP), NOiE1WMAINCIE), EXPVL(IMxMEMXm), EXPEC 8
3UPUTHXNOEIM ATlYE)1 IffIL(NMONKE 1MXTYE), EXPECT 9

A-! 3

4SEYIWWIRXNOE,MXTYPE), INIEX(ISIZE3), E(IXNOENAXTYPE) 1 EXPECT 10
SIDP(NNOlE), DEP(NGXNOEMAXTYEMAXUSER) EXPECT I11

LOGICAL PRIN(TON COXHOR 114
C EXPECT 12
C TIS 9MDIE CALCILATES YARIOUS PRFOIIWE MEAGUES EXPECT 13
C FOR THE TIME-MINDII SYSTEM BEINS HulED. THESE MEAGUE EXPECT 14
C INLIZE THE MALU OJBE LENGT DISTRIBITION FOR EACH TYPE EXPEC 15
C OF USER AT EACH NCCE1 THE UTILIAZTION OF THE MODES BY EACH EXPECT 16
C TYPE OF USE, AND TIE RESPONSE TIME FOR EACH TYPE OF USERt. EXPECT 17
C EXPECT 18

DO 10 1=r1, M'VXNOGE CoXIO 115
DO 10 J a L, MUS1EL COXNO 116
PROSTOT(I,J) - 0.0 COXHO 117
DO 10 K 2 1. MITYPE COXHOD 118
FROMA(,K,J) - 0.0 CoXHO 119
UIL(IvK) a 0.0 COXHOD 120
powT(I,fl = 0.0 C011 100 121

10 CONTINUE COXIUR 122
IF (FRINTN) UITE(h, 1) CMEI00 123

1 FOWT(1lI,IOLn***FlE (XTWf OF THE HMlE. FOLLONSOE*IIV) COIMf 124
D0 70 1=m1, "(WES EXPECT 21
CLL REAW1S3,Pffi MI),ISTATESMANW#E2+I) EXECT 22
K = 1 ENUET 23
INDEX s=0 EXPECT 24
NTOAL = 0 EMPKI 25
D0 20 J a 1, IiWES EXPECT 26
ISTA1EW~) = EIEC 27

20 c0uINIJ W 2
40 CONTIJE E1ECT29

MYOTI = NWATI + I EIECT30
IN a IIeX 4 1 ENUT 31

PROS a PmDW(DIE) EI 32
PROUTOT(I,NTOTNI a PROSTOT (I,00OT.) + MU EMI 33
DO050 Ja u1, IiWES 3
JJ aISTA1'EU J)T
PMMPA(I,J,JJ) - PFOIM(I,J,JJ) 4 Pf Ma :4
IF I J .EQ. 1) 00 TO 50 f~w ,1i
PARTIAL = FRID (JWJ - 1)EP '3
IF I NOIETP(I) .ED. 3)00 TO 45 owl v
PNTTI. a PNMII / (NTOTA. - 1) E
UTIL(IvJ) a UTIL(1,J) + PNMII ECT 41

45 CONITIIE W 4
PffitM.A a PMRTIL % It. I SEIY1I(IJ)) EmP~ 43
EPAR(1,J) a BEPMRTI,J) 4 PMTIAL EmT44

50 CWUEI EXPE 45
IF I hE Ell. ISTATES) 00 TO 70 E1NCT46

60 ~CNT1111E Wml47
ISTATECK) a ISTATEIK) + I EVECT 45
7 1ISTATE(K) GT. NUSERSC+ 1)00 M65 EImT 49
K a I aml g
DOO m 0 ECT 51

65 WITIJIE hXECT 5
ISTATEWK i EXPECT 53

A- 14

NTOTAL NTOTA. - NUSERS(K EXPECT 54
K K+ I EXPECT 5
IF (K .E. IMPS) (30 TO 60 EXPECT 56

70 CONIDE EXPECT 57
(KSERS1 w IsmR+ I EXPECT 58
IF (PRINTON) WRITE16,74) NODES COIMOD 125

74 FORHATUIO OTHE ?GGW. VJELE LENGTH PROBABILITIES EMPEC 60
ImAT EWILIBRDJN'1111X,QM. LENOTH ,SX,mIEIlE LENGTH 0, EXPECT 61
2PROMILITY FOR NODES I MAWUG 8.13) EXPECT 62
075 1 t , NODES EXPECT 63
EXPVA(lI1) z 0. EXPECT 64

75 ESITNLE EXPECT 65
DO 110 J x 1, IUERSI EXPECT 66
JJ = J I EXPECT 67
DO 90 11, NODES EXPECT 68
M UM)L(P1 a EXPVY..I,1) + JJ # PIIODTOT(IJ) EXPECT 69

90 CONTIEE EXPECT 70
IF (PRINTW() WITE(6,80) JJ, (PROBTT(I.J), 1alNODES) COXHO 126

80 FOR9TW I , 71, 10FI0.5, 10(124X, 10FI0.5)) EXPECT 72
110 OONThIIE EXPECT 73

IF (PRINTON) ISrrE6 1 111) COXNO 127
III FmIAT(/IMIOX *THE EXPECIED IUIER OF TASKS AT MAO NODE'//0X1 EXPET 75

1 'NODE', IOX, 'EXPCTED VNA") EXPECT 76
DO 113 1 -=I NODES EXPECT 77
IF (FRI(N) WITE(6,112) 1, EXPVAL(I 11) OXHO 128

112 FORMiyT(IIX, 4IOXF1O.5) EXPECT 79
113 OJNTMNE EXPECT 80

IF (PRIKTON) ITE(6, 1141 COXHO 129
114 FORU MM((JIOL 'TIE rMIMGIBE12 LENGfTH PROBABILITIES ,EXPECT 82

VAT EQUIUBRUD 0.ASSIFIED BY TASK TYPE") EXPECT 93
DO0160 J - 1, MTPES EXPECT 84
IF (PRITON) WITE(6, 115) J, NODES COXHOD 130

115 FORMATUI(1X 1 E ?U6INA. GIE LENGTH PEBABILITIS EXPECT 86
VAT EWJILIORIIN FOR TASK TYPE'.13//I1X,'VMI LENGTH'5X, EXPECT 87
200EIE LENGT PROBABILITIES FOR NODES I MOJGH '113) EXPECT 88
1(159151 x MMERS(J + I EXPECT 89
DO 1161,I NODES EXPECT 90
EXPV01I,J) a 0. EXPECT 91

116 CONTINLE EXPEC 92
0O 150 K m 1, IUWERSI EMPET 93
KuK- I EXPECT 94

DD0120 1Is 1, NODES EXPECT 95
EXPVALIJ) a EXPVI(IIJ) +' I(# PROM(1,J,) EXPECT 9%

120 CONTINUE EXPEC 97
IF (PRIN) WITE6,130) KX, (PROM(1,J), 11,NODES) CommO 131

130 FOWT(/141,1 1 6L1(FI. 1 10(/24XL0F10.5)) EXPECT 99
150 CONIE.E EXPECT 100
160 CONTME EXPECT 101

WITE(641 42) ITYPES EXPECT 102
162 FOU I/IOLOflE EXPECTE HUES OF TASKS AT EACH NODE, EXPECT 103

1'O.ASSIFIED BY TASK T'YPE'tflWNDE, 101,EXPECTED NUMBR EXPECT 104
22OF TASK WYES 1 1110110 5,13, " FOUND Ar NODE') COXIIIN 132

0O 166 11a I NODES EXPECT 106

A- 15

IIE(6,164) I, (EXPAL(I,J),J-1,ITWES) EXPECT 107
t64 F(]IMT(II1X, 14,IOX, 1 OFI1., 1 O(124X, OFIO.5)) EXPECT 108
166 CONTIME EXPECT 109

W IPRINTOII) WRITE(6,170) ITYPES COIIOD 133
170 FOMAT(I1//IOX,"NODE UTILIZATION BY EACH TASK TYPE'//IIOX, EXPECT 111

14M ', OX, 'UTLIZATION OF NODE BY TASK TYPE I THOUGH *13) EXPECT 112
DO 180 I 1, NODES EXPECT 113
IF (NOIETYP(I) .EQ. 3) 00 TO ISO EXPECT 114
IF (PRINTGNI WRITE(6,t1i h (UTIL(IJ,J=1,ITYPES) COXMOD 134

175 FMT(IOX,1 4, IOX,IOFIO.5,10(/24XIOFIO.5)) EXPECT 116
190 CONTINUE EXPECT 117

0 190 a 1, NODES EXPECT 118
DO 105 J - 2, ITYPES EXPECT 119
UTIL(I,) = UTIL(t,) + UTIL(I,J) EXPECT 120

105 CONTINUE EXPECT 121
190 CONTINE EXPECT 122

IF (PRINTON) WR[TE(6,195) COINOD 135
195 FOrT(TI//uur*,'TOTAL NODE UTILIZATION@/I/IO, EXPECT 124

1INOIE, IOl,'ITILIZATION') EXPECT 125
WO 200 I ulh NODES EXPECT 126
IF (NMETYPID .EQ. 3) GO TO 200 EXPECT 127
[F IPRINTON) WRITE(6,10) I, UTIL(1,) COXHIOD 136

198 FWT/1IOI14, 1OX,FIO. 5) EXPECT 129
200 COITINLE EXPECT 130

IF (PRINTON) IRITE(6,210) ITYPES COXOD 137
210 FWAWMI(IOTHE MAN TIME EACH TASK TYPE SPB)S ", EXPECT 132

1*AT THE AR[OIO USNES FOR EACH INTERN "ION/IOK,'NOE', lOX, EXPECT 133
2 .M riTE FOR TAM TYPE I THROUGH ",13) EXPECT 134

BO 230 1 a h NOWES EXPECT 135
IF 1D (1) .E. 1) 00 TO 205 EXPECT 36
IF (FRINON) IRI1E(6,M24) COM 138

204 FooT(IOI,'ThE MODEL DOES Nor CAC(IJc E TIES TIME FOR ',/10 1, EXPECT 139
1'NODES MITH STATE DEPI T SMVICE RATES.) EXPECT 139

GO TO 230 EXPECT 140
205 CONTINUE EXPECT 141

00 220 J 1, [TYPES EXPECT 142
UTIL(I,J) = 0. EXE 143
IF ((DNMiT(I,J) .EO. 0.) .OR. IE([,J) .E. 0.)) 00 TO 220 EXPECT 144
UTILI,J) a EVW(I,J) / *OP(IJ) # E(1,J) EXPECT 145

220 CONIINE EXPECT 146
IF (PRINTON) WRITE(6,22) I, (UT[I(I,J),J.I1 ITYPES) MMINO 139

225 FOIAT(1OX, 14,IOX, IFIO.5,10(24X, IOFIO.5)) EXPECT 148
230 CONTIM.E EXPECT 149

IF (PRINTON) URITE(6i240) CoXHO1 140
240 FCWRT((Il/IOX, 'TE 4I RESPONSE TIME FOR TE VARIOUS U, EXPECT 151

1'TASK TYPES') EXPECT t52
00 290 1 -1, NODES EXPECT 153
IF (WETP(I) NE. 3) 00 TO 290 EXPECT t54
IF (MRINTON) RITE(6,250) I COonU 141

250 FMfT(I/ItO,'THE MEAN RESPONSE TIME FOR TASK', EXPECT 156
IMRE SE AT NODE , 13//IOX,TASK TYPEN,IOX, EXPECT 157
2'RESMPNE TIVE') EXPECT 158
DO 270 J a l, [TYPES EXPECT t39

A- 16

TIME a 0. EXPECT 160
IF (DEPARM(,J) .EQ. 0.) GO TO 255 EXPECT 161
TIME a IIIJSERSIJ) - EXPVAU(I,J)) I IEPMT(,J) EXPECT 162

25 CONTINUE EXPECT 163
IF MPINTON) WITE(6,260) J, TIME COXHOD 142

260 FUIAT(/13X,I3,14X, FIO.5) EXPECT 165
270 CONTINUE EXPECT 166
290 CONTINUE EXPECT 167

RERM4 EXPECT 168
C EXPECT 169
C THAT'S ALL FOLKS! EXPECT 170
C EXPECT 171

END EXPECT 172
SUBROUTINE O4N (PR{I9,NDIS,DISXPR,TCPU1 DID OJDB1, COINO 143
IEXPVI.SERVICE. DELTA, PEXPYAL, IUSERS, m1XNODE, MAXTYPE, COXHO 144
21TYPESMODESMIEZ MAIEA) COXHOD 145

coxHon 146
DIMIGN DO(NG~rX1I3E) 1DIS9(Pfl9(M ,EMXTYPE), COXHOII 147

IDIO(MKXTVPE) ,EXPW(IAXNOD, NAXTYPE) 1SERVICE(IAXM)E,NAXTYPE), C0OMM0 148
2E(UAXNUDENAXTYPE' ,X(MAXNOIE) ,TCPU(NIAXTYPE), £011109 149
2IWA(AXNODE) C0IODo 150
REAL DELTA,PEXPVI. C0OMM0 151
INTEGER NDISKSAXNOIL NAXTYPE, IUSERS COXIIOD 152

C COXMOD 153
C THIS SUBROTINE CALCULATES THE BETA DETIEEN THE LAST CoIWIO 154
C ITERATIONS ANSME FOR TM MilER OF JOBS IN THE "THINK STATE" £0110 155
C AmI THE C2JRB4T ITERATIMN ANSWER C*)NED IN COMMO 156
C EXPYWL(NMI19S+3,L). M4.9, USING THE SJUROUIN~E Co"'UTE IT COINO 157
C ECOMPFES THE PROBABILITY TRANSITION MATRIX, PROS, USING THE £0110 158
C F4JMULA COJNTAINED IN OIWS ARTICLE, UEEING NETWIORK ME09 COXHOD 159
C OF INTERMIWE COMUTIII3 SYSTEMS, IN TIE COINOD 160
C PROCEEDINGS OF THE IEEE, VOL.. 63, NO. b, JIIE 75. COXIO 161
C COXHOD 162
C £01199 163

URITE(6,67) MITER £01110164
67 FORMAT(1H1/(/I10XM'RANITICK PROBAILITIES DESCRIBING , £01110 165

IIOYBQI OF TASS AMNOU THE HOOEL'S NODES FOR ITERTION ',15) COIWOD 166
DO 110 K = 1, ITYPES; £01110 167
IEITE(6*68) K, NODES £011109 168

68 FOMIr(/lOX TRASITION PROBAILITIES FOR TASK TYPE CO L010 69
11l3/(1X. 2EPAfrURE9 71, "PROAILITY OF TASK NOVEIEN FRWi/121, COINOS 170
M'N , 9X ,DERTURE NODE TO NODES I THROUGH 0,13) COMMO 171
CALL wlflIr(K,PRO,NII(S,01ISXPD. 1D0, COXHOD 172

IEXYA,SEIWICE, IUSErSAXNOE,NAflYPEN09,NAGO) £0110 173
IF (NITER ME. 01)00 TO 70 £0110 174
P903(1, I) a PROW(,1I) + PROBNIK(S2,I) COXWO 175
PRO(NISWS2,1) - 0.0 £011109 L76

70 COMMDE COINO 177
D0 75 1 a1, NODES £0110 178
IRITE(6,74) 1, (PUD(JW[,J,NOES) £0110 179

74 FOWT(/121,14,IOLIOIO.5,0t/24,LOFO.S)) CO011900
75 CONTDI COINOD 1ot

MIPUS NME MXIU C01MB0 182

A- 17

CALL WR17D6(3,PRO9(1.1) dJIROB, I) COIGOD 183
DO (a I a1, NODES CORNOD 184
PRO(I.I) - FP(3(II)-t. COIMOD 185
PRO(I) a0. COISO 186
KMI z 0. COINOD 187

-80 CONTINUE COXSO 188
PROB(M,) a I. COIMOD 189
XMI %, 1. COXHO 190

c COIMOD 191
C THE RELAFIII TRANSITION RATE ETWEEN NODES IS CMJ.IATE COMlO 192
C SOLVING THE SET OF LINEAR EQITIONS SPECIFIED BY PROD AND 1. COXHOD 193
C THE SIDWTINE LECIiF SOLVES THIS SET OF LINEAR EQIMTIONS. COMMO 194
C LEBTIF IS A SIJIR0JTUNE FROM TIE 1119 PACKAGE SUPPORTED AT CoImD 195
C IIGHT-ATERSct4 AFB OHIO. coXmoll 196
C COXHOD 197

CALL LEOTIF(PROD, 1,,OMRS. MAINODE, X, 0, IdNER, IER) COIMOD 198
CALL REAUI(3,PRDII),INFR0D, I) COX I"19
Do 100 1= 1 NODES COXHOD 200
amm a 0. COXMOD 201
DO 90 J = 1, NODES COXMOD 202
amW a IWHA + (PRO(IJ) I 1(J) COIMOD 203

90 ONTIlIE COXMOD 204
IF (AS(GAMAP- XM) I LE. .1) 60TO 100 COKM205
WITE(6,95) I, MXL), La,NODES) COMJR 206

95 FOW(101, 'THE RELATIVE SERIJCE RATE DEEN NODES CA.LUTED COXHE 207
"FM THE COEFFICIENT AY M9O IS IN EI FOR NODE £011101) 208

213//SX, 'THE RELATIIJE SEfRVICE RATES ARE I'IoN, £011100 209
310(/L0(F1O.5 12K))) COXHOD 210
0O TO 115 COXMOD 211

100 CONTINU.E COIMD 212
DO 105 1-1 1 NODES COIMOD 213
E(11K) me X(I) COXHED 214

105 COJNTINUE COINE 215
110 CONTINIE COM10 216
115 CONTIE COXHOD 217

RETURN CO110 219
END COXMOD 219
SUIROUTINE COFIJTE(JO..A, PROSMDI DW,11 R9 TCFU, 010, COXMOD 220
IEXPYLSERVICE, IUSERSNAINOE. MAITYPE,NMS, MAYB) CO110 221
DIMENSION FRCS(MAXN(1, MAXIE) 1DIS(ADIDDE1 AXTYPE)1 COINE 222

1DIOMAXVPE.E1VAL(A1NLMAITYE)1 COIMOB 223
2SERVICEMONAX)TPMCMAXTYPE) COINE 224

INTEGER JCLASS,1119SS IUSERS. rAXNDIIE, MArTYPE, ITYFES £011100 225
C COIMOD 226
C THIS SUJ TI1E COWIJES TIE PROBABILITY TRANSITION MlATRIX COIMED 227
C FOR THE MO0DEL BASEDI ON THE INPUT OF CHEN'S 11016 (NDISKS, DISKPRD, £011109 228
C TCPU, AND 010) 49 HIS FRUAP. COIMOD 229
C COINE 230
C INI11A.IZE PROMIL1TY TRANSITION MlATRIX £0110 231

DO 10 1 INES mil10 232M
D0 10 J - 1, NODES COVIOD 233
IF (J .EQ. 1) 00) TO 5 C0110 234
PROMf, 1) a 0.0 C0110 235

A- 18

GO TO 10 coxWo M36
5 PROSJ.I 1.0 WXOD 237
to codritAE CDXM28

M~B(NDIS(S+3, 1) SERUICE(.J1.M) / MI(JMMAS) CIOM 239
DO 20 1 a1. NOIIA<S COXHOD 240
PR0I(I4+l,1) a DIO(JMAS) * PRO(WISM-S3,I) * DISKPRBfI,JCLASS) CMMI0 241

20 (ONTIRJE COMMO 242
IF ((EPVYANDISKS4,) D GE. IUS5S - NVGJ0) ANID. t0K 243
(SIQ S GOE. NN/GJ0)) COM10 244

2FfO(%DI9(Sf-2,MDIS(S43) : IUSE - tWJOJO) / EXPVP(N)ISKS43, 1) COXH 245
COXNOD 246

IF (EUSF .LE. NAWORwio PROB(NDISKS2,NDIS(S+3) =0.0 COXHOD 247
CXOM 248

IF I EWVM.INDISIS+3,1) .E. (JUSERS - NAVUJB)) COXHOD 249
1 PRG(NlSKS.2,NDISKS+3) = 1.0 CONNOD 250

COMMU 251
PROB(,)ItM~+3) = 1.0 - PRM.(NDISKS+Z2DIISI(S43) COMMO 252

COXHOo 253
CHiICEI =0.0 COXO 254
CI4OICE2 = 0.0 COIO 255
ACTIVE - EXPVM..(I1) + EPYALNtSYS42, 1) COMMO 256
0040 1 1, NISaK COXNOD 257
ACTIVE ACTIVE +EWW~.(1*I, 1) CMulD 258
EMlICE1 OfOICEL + PROB(I41,L) CDXWOI 259

40 CwMnui COXNOD 260
CHOICEI a CICEI +PROD(NOIS(S4.3 7) COXIOD 261
CHOICEI, 1.0 - CHOICEI COMMO 262
IF ((ACTIVE .T. NA143J3) OR. CIUSES .LE. HAYGJUB)) 00 TO 50 COXNOD 263
CHOICE2 - PfR)9(NIISKS*3,1) * (ACTIVE - tM16JD)/ COMMI 264
1 (IWERS-tdAVONI) CDOD 265
PROD(NDISKS+2, 1) = ANINI (CHDICEI, CII[CE2) COMMO 266
00 TO 60 COMII 267

50 PRO(NDIS(S+2,t) z 0.0 COMMO 268
60 FROM) 21.0 - PROB(t4D!SKS+2,1) - (1.0 - CHDlCEI) COMMD 269

FEMCDXMII 270
END CDXIII) 271

A- 19

SECURITY CLASSIFICATION OF THIS PAGE (When Det. nteedjR EPORT DOCUMENTA.TION'PAGE BFRE~ COPLTING ORM
1. REPORT NUM!SER -. GOV'T ACCESSION NO. 3. RErCIPIENT'S CATALOG NUMBER

4L TITLE (and Subtitl) s. TYPEZ OF REPORT & PERIOD0 COVERED

MULTI-CLASS ANALYTICAL MODELS OF THE DECSYSTEM-10 Master's Thesis

JOB-SWAPPING BEHAVIOR 6. PERFORMING OqG. REPORT NUMBER

7. AUTHOR(s) O. CONTRACT OR GRANT NUMEER(s)

Michael H. Cox
Capt USAF

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN f PRoJIECT. TASK
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, OH 45433

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1981
13. NUMEER OF PAGES

]50
14. MONITORING AGENCY NAME & AOORESS(lI different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

Ie. OECLASSIFICATION/OOWNGRADING
SCHEOULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the oehact enter" In Block 20, It dillret atm Repot)

1 5 APR I
I. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: LAW AFR 190-17 Dean for Research and~.~Professional Development

F majow-, USAF Air Force Institute of Technology (ATC)
D' "p 4Affairs Wright-Patterson AFB, 011 45433

19. KEY WORDS (Continu e an reae@ side It necessary end Identify by block nutabe)

Closed Queueing Network Models
Computer Performance Evaluation
Time-sharing Computer Systems
Approximate Solutions to Queueing Networks

20. ABSTRACT (Conel.mm on ferer*& side If nccaw" md Identify by block number)
An improved model of the DECsystem-1O job-swapping behavior was

developed. This model combines a previously developed closed queueing
network model with a job-swapping model developed by Chen (Ref 5). Chen's
swapping model provides an approximate solution to a network queueing model
with a state-dependent probability transition matrix.

This combined model is then tested on a hypothetical, though
realistic workload containing both interactive and batch jobs. The two
classes of jobs are treated first as separate classes, as one class having

DD , A, 1473 EDITION OF I NOV 6, IS OBSOLETE

SECURITY CLASSIFICATION OP THIS PAGE (When DOa Enta r

SCUITY CLASSIlICATION OF THIS PAGI[M'SN Dae Eae;s.E

just the interactive job characteristics. The results of these experiments
and a comparison between Chan's swapping model and the classical are
presented.

The results of the experiments indicate that it is important
to model multiple classes for systems which have a significant amount
of batch activity. Also, Chen's swapping model provices a more realistic
model of job-swapping behavior for the DECsystem-lO. Therefore,
combining the multi-class model with Chen's swapping model improves the
modeling accuracy fon the DECaystem-1O. Recommendations for extensions
to this multi-class Chin model are also discussed.

SIECUPITY CLASSIFICATION OFp ?%a" PAGLt~hon Date EntereQ

